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A great need exists for an abundant, easily accessible source of patient-specific 

cells that will function for use in regenerative medicine. One promising source is the adult 

stem cell derived from adipose tissue (ASCs).  Isolated from waste lipoaspiration, these 

cells could serve as a readily available source for the regeneration of damaged tissues. To 

further define the biology of ASCs, we have isolated multiple cell strains from different 

adipose tissue sources, indicating wide-spread distribution in the body. We find that a 

widely used set of cell surface markers fail to distinguish ASCs from normal fibroblasts.  

However, our ASC isolations are multipotent while fibroblasts show no differentiation 

potential.  In further contrast to fibroblasts, these cells also show expression of genes 
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associated with pluripotent cells, Oct-4, SOX2, and NANOG. Together, our data suggest 

that while the cell surface profile of ASCs do not distinguish them from normal fibroblasts 

and their lack of telomerase shows their limited proliferation capacity, the expression of 

genes closely linked to pluripotency and their differentiation capacity clearly define ASCs 

as multipotent stem cells.   

iPS cells are another promising cell type for tissue regeneration, due to their 

expression of hTERT and their capacity to differentiate into all three germ layers. 

Interestingly, telomerase is activated during the induction process, accomplished by the 

exogenous expression of four genes in normal, non-hTERT-expressing fibroblasts.  To 

elucidate the mechanisms behind this activation, we examined the overexpression of these 

four factors in BJ fibroblasts and ASCs, which resulted in undetectable hTERT expression. 

We then demonstrated a lack of an acetylated histone H3K9 with the opposing di-

methylation, indicative of a closed chromatin state at the hTERT promoter. Subsequent 

treatment of cells with TSA alone showed an upregulation of hTERT mRNA without 

telomerase activity.  However, telomerase activity was found when ASCs, but not BJs 

were treated with TSA and all four factors, indicating differential regulation of hTERT in 

cells of similar mesenchymal origins. Our data suggest that while hTERT’s expression is 

universally dependent on the presence of a relaxed chromatin state and sufficient 

transactivating factors, other cell to cell differences can prevent its expression.  
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Chapter 1 

Background and Review of Literature 

 

Aging, Disease and the Telomere 

 There are approximately 2.5 million deaths each year in the United States, and 1.7 

million of these deaths are in individuals sixty-five and older.  With the average life span in the 

USA at approximately seventy-eight years of age, this places roughly 70% of all deaths in 

America in the final 16% of our average available life (Heron et al., 2009).  This strong 

correlation between aging and the increased incidence of death and disease has an exponential 

growth relationship causing the statistical probability of death to increase significantly each year 

(Heron et al., 2009, Figure 1). The underlying causes of these late-in-life deaths are diverse and 

complicated; however, there are two specific diseases in the forefront: heart disease, comprising 

approximately 40% of deaths in the US and malignant neoplasms with 23% of deaths, which 

equates to ~63% of elderly deaths. The relationship between the increased incidence of these two 

diseases with ongoing organismal aging creates a strong need to understand the mechanism 

relating these two phenomena.  This particularly holds true for cancer, which is defined as an 

accumulation of acquired or inherited DNA mutations leading to the genetic dysfunction and 

resulting phenotypic neoplasias seen in human disease.  These genetic aberrations occur with 

certain statistical probability over time at an approximate mutation rate of 2.2x10-9 per base pair 

per year (Kumar & Subramanian, 2002). Further, due to the statistical guarantee of base pair 

mutations, the culmination of these events and subsequent disease seem to be an almost 

inevitable event if overall life is long enough.    
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Figure 1: “Aging Kills.”  As humans age, the likelihood of death increases exponentially.  Of 
the sum 2.5 million deaths every year,  70% occur after the age of 65 with a sharp increase after 
passing the average life expectancy of 77.7 years.  An obvious sentiment, “aging kills,” 
summarizes how the many diseases that cause death are linked to the deterioration of the body as 
we grow older. Data adapted from CDC 2006 Annual death rate report (Heron et al, 2009).  
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When considering DNA damage and accumulative mutation, another important process 

must also be taken into account: the relation of the gradual loss of telomeres with age. The ends 

of linear chromosomes, termed telomeres, are constructed of a hexameric repeat sequence 

TTAGGG (Watson 1978, Moyzis et. al. 1988, Olovnikov 1971)  Due to the nature of DNA 

replication machinery, these tracts are lost progressively due to the mechanism know as the “end 

replication problem” (Figure 2) (Watson 1978, Olovnikov 1971).  As DNA is replicated, the 

leading strand is continuously synthesized from 5’ to 3’, while the lagging strand is 

discontinuously replicated from multiple RNA primers (Watson 1978, Olovnikov 1971).  The 

resulting DNA segments of the newly synthesized lagging strand, termed Okazaki fragments, 

have their primers removed and the gaps are then filled in with DNA.  Problems with this 

process arise when the most terminal RNA primers are removed.  Due to the nature of RNA 

priming, the last RNA initiation sites typically are not annealed at the very end of the telomere.  

When removed, DNA ligase is incapable of filling in the gap as there is no flanking DNA to 

bridge to, which results in incomplete synthesis and a shortened 5’ strand with a 3’ overhang. 

This 3’ overhang is typically degraded resulting in a loss of DNA every time the cell divides 

(Moyzis et. al. 1988, Blackburn 1991).  These shortened telomeres can be relatively innocuous 

for a cell, functioning as a proliferative “clock,” which turns on very strict signaling for a 

senesencent non-dividing state once a certain shortened length is achieved.  

This limit to the proliferative capacity was first described in 1961 by Leonard Hayflick, 

thus the point at which cells undergo proliferative senescence is termed the “Hayflick limit” 

(Hayflick et. al. 1961).  The inactivation of cell checkpoint molecules that signal senescence, 

such as pRB and p53, typically through gained gene mutation, allow for continued cellular 

proliferation past the Hayflick limit resulting in firther telomere erosion  (Figure 3) 
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Figure 2: “The End Replication Problem.”  During normal eukaryotic linear DNA replication, 
the synthesis of the lagging strand results in multiple pieces of new DNA called Okazaki 
fragments. The replication of these fragments is initiated via multiple RNA primers, which are 
removed after synthesis is completed. When the primer bound on the most terminal end of the 
telomere is removed, due to its position, it is not replaced, resulting in a gap on the 5’ portion of 
the newly synthesized strand. 
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Figure 3: Telomere attrition leads to cellular crisis.  As normal somatic cells proliferate, they 
lose telomeric tracts of DNA due to the “end replication problem”.  Germ and some stem cells 
however, maintain their telomeres using the ribonucleoprotein enyme telomerase.  If telomerase 
is activated ectopically in normal somatic cells before mortality stage 1 (M1; a.k.a senescence), 
cells begin to maintain and stabilize their telomeres allowing for an infinite proliferative lifespan 
(blue arrow). Once telomeres reach a certain length, cells will undergo a senescent growth 
arrested state (M1).   If cells are able to inactivate cell checkpoint molecules such as p53 and 
pRB, they will continue to divide until telomeres become critically short and enter into mortality 
stage 2 (M2; a.k.a. crisis).  This is typically characterized by cell death, but some cancer cells 
manage to immortalize and activate endogenous telomerase, allowing for continued proliferation. 
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As the telomeres continue to erode past mortality stage 1 (M1), they will reach a critically short 

state that typically results in the formation of chromosomal aberrations such as end to end 

fusions, anaphase bridges, and chromosomal breakage resulting in the induction of mortality 

stage 2 (M2; crisis) (Holt et al., 1999).  All of these chromosomal abnormalities lead to acquired 

genetic deficiencies and allow cells to eventually progress to a tumorgenic state. 

  Along with tumor formation, the telomere is involved in many other human diseases as 

well, most of which interestingly mimic an aged human state. One such disease is Werner 

Syndrome, a type of progeria that was first described in 1904. The symptoms of Werner 

Syndrome include a phenotypic premature aging characterized by graying hair, substantially 

increased risk for tumor formation, heart diease, atherosclerosis, diabetes mellitus, thickening 

skin, and cataracts (Epstein e. al., 1966).  The molecular mechanisms have been linked to a 

mutation in the WRN helicase gene on the short arm of chromosome 8.  The WRN Helicase’s 

function is of paramount importance during DNA replication allowing for the proper unwinding 

of the template strand.  The dysfunctional helicase causes large amounts of telomeric DNA to be 

left out during synthesis causing quicker than usual telomere erosion (Crabbe el al., 2007).  This 

causes many of the proliferating cells in the body to undergo premature senescence, explaining 

many of the traits associated with this disease.   

Another disease associated with telomere dysfunction is Dyskeratosis Congenita (DKC) 

or Zinsser-Cole-Engman syndrome.  This disease is also characterized by an advanced aging 

phenotype and an increased incidence of tumor formation (Georgouras 1965).  The mechanism 

of this disease is hypothesized to be due to either a mutation or indirect inhibition of the RNA 

component of telomerase (hTR or TERC), which helps to extend the telomeric tracts in human 

non-somatic cells (discussed later) (Armanios et al., 2009).  This mutation was also mimicked in 
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mice, where the mTERC (mouse telomerase RNA component) gene was knocked out.  At first, 

these mice showed no phenotype, but following many subsequent generations, the progeny 

began to show severe age-related degeneration (Blasco et al., 1997).  This delay was thought to 

be due to the extremely long telomeres of inbreed mice. Once the aged phenotype began 

presenting itself, these mice also demonstrated an increased incidence of chromosome 

abnormalities. This genomic instability further demonstrates the necessity of telomere 

maintenance for normal function in an in vivo environment.  

 In addition to these diseases another interesting discovery linking telomere biology to 

aging became apparent with the first successful cloning of a mammal.  Dolly the sheep was 

cloned in 1997 using a technique called somatic cell nuclear transfer (SCNT), a process that 

involves the fusion of an enucleated egg with a somatic cell, discussed in further detail later. 

Dolly was a healthy sheep, but ended up only living about half of the average 12 year lifespan of 

her species and died due to age related complications (Ritchie et al., 1996).   It was later 

hypothesized that this was due to the donor somatic cell being extracted from a sheep of six 

years of age.  Thus, the sheep’s telomeres had eroded down to about half of their total available 

length giving Dolly only six years of viable life until her cells began to senesce (Shiels et al., 

1999). These data demonstrate that the loss of telomeres is not only a cause of in vitro cellular 

senescence but is also strongly correlated with the onset of detrimental changes during 

organismal aging.  Further, these syndromes show that specific diseases, such as tumor 

formation, are associated with the onset of old age and are linked to telomere erosion and 

dysfunction.  While all cells of the body are subject to telomere attrition during normal division, 

some cells of the body have to circumvent this to fulfill their normal function, typically by 

expressing the enzyme telomerase. 
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Telomerase 

Telomerase is a ribonucleoprotein enzyme, which is composed of two primary 

components:  hTERT (human TElomerase Reverse Transcriptase), the catalytic portion of 

telomerase, which facilitates the physical addition of the telomeric tracts of TTAGGG, and hTR 

(human Telomerase RNA), an associated RNA that serves as the template for telomerase’s  

reverse transcriptase activity (Blackburn, 1992; Bodnar et al., 1998).  hTERT is located on the 

short arm of chromosome 5 at 5p15, while the hTR gene is located on chromosome band 3q26 

(Cong et al., 1998; Wick et. al. 1999) .  hTERT uses hTR as its RNA template, which allows 

telomerase to recognize and attach to the 3’ overhang at the telomere and then processively 

reverse transcribe tracts of the hexameric repeat sequence to the end of the DNA (Figure 4, Feng 

et al., 1995).  This action provides additional telomeric DNA for replication to occur further out 

on the end of the lagging strand, thus preventing any loss with continued replication.  This 

elongation prevents many of the deficits seen during continue proliferation due to telomere 

attrition and allows for a state of cellular “immortality.”  

In normal somatic cells, telomerase activity is not detected, as the hTERT gene is 

silenced through currently unknown mechanisms, while the hTR gene is constitutively expressed 

in almost all cell types (Bodnar et al., 1998).  This is in contrast to telomerase activity seen in 

most (~90%) cancer cells, germ line cells, and some stem cells (Holt et al., 1996; Avilion et al., 

1996).  These cell types are capable of maintaining their telomeric tracts through telomerase 

activity and thus have a potentially infinite replicative life span (Elmore et al., 1999 ).  To 

examine the specificity of hTERT’s correlation with this immortal phenotype, normal fibroblasts 

were stably transfected with a vector containing only the hTERT gene coupled to a CMV  
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Figure  4: Telomerase extension mechanism.  Telomerase operates in a procesive manner 
adding telomeric hexamer tracts of TTAGGG to the 3’ ends of DNA.  hTERT first associates to 
the 3’ overhang using its complementary RNA template (hTR) sequence.  Telomerase then adds 
the six base pair sequence to the DNA end, translocates to the next available six base pairs, and 
elongates again.  This process continues until a larger 3’ overhang is achieved, allowing for 
DNA replication to occur further out on the telomere. 
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promoter (Counter et al., 1998).  Once cells were selected, the resulting population of fibroblasts 

exhibited the same immortal characteristics of cancer cells without any transformative capacity 

(Bodnar et al., 1998).  This demonstrated that hTERT is the only component in normal cells 

missing for proper telomerase re-constitution.  This also showed that telomerase, although 

necessary for cancer progression, is not alone sufficient for malignant transformation, as the 

stable fibroblasts were propagated for many passages past their normal Hayflick limit with no 

tumorgenic properties detected, besides unlimited proliferation potential (Morales et al., 1999). 

Due to telomerase’s near universal expression in cancers and its capability for proliferative 

immortilization, it has been studied extensively as both a marker of tumor formation and as a 

target for anti-tumor therapy (Norton et al., 1996; Shay & Wright 1996; Taylor et al., 1996). 

Many researchers have approached telomerase inhibition primarily as an adjuvant therapy to 

standard cancer treatment modalities.  After traditional cancer treatment using 

chemotherapy/radiation and/or surgery, telomerase would be inhibited allowing for a continued 

protection against tumor recurrence by limiting the proliferative capacity of any remaining 

neoplastic cells.  Telomerase inhibition has also been suggested as a means to sensitize cancer to 

standard treatment, by preventing its recovery following standard methods of treatment 

(Huminiecki, 1996; Poynter et al., 2007). 

While telomerase poses a very attractive means at tumor prevention, its use in normal 

cells cannot be overlooked.  When individuals undergo chemotherapy/radiation treatment, many 

cells that depend on high levels of proliferation such as hair follicles, crypt cells of the gut, and 

germ line cells are heavily affected as well.  This is evident by the many negative side effects 

such as hair loss and continued GI tract irritation manifested post-treatment.  Following 

treatment, many of these stem cell niches are permanently affected, causing premature grey hair 
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and possibly disease of the gut and gonads (Dekaney, 2009; Aulmann et al., 2009; Kamil et al., 

2010).  These effects are typically related to the senescence of the cellular source of replenishing 

tissues.  The point has been argued that a therapy of telomerase activation could function as a 

restorative means of proliferation (Yudoh & Nishioka, 2004; Harley, 2005).  This sort of 

telomere rejuvenation could be a mechanism of treatment for cells affected following cancer 

treatment.   It could also be applied during disease progression of syndromes such as Werners, 

DKC and possibly during the normal process of aging (Davis et al., 2006; Ariyoshi et al., 2009; 

Rowe-Rendleman, 2004).  This has been met with skepticism as many camps argue that this 

would cause more harm via a presumed increase in cancer susceptibility (Noble et al., 2004).  

While this is certainly a cause for concern, studies have been done showing that telomerase 

expression and the subsequent telomere stabilization could have a protective effect, preventing 

tumor formation (Varadi et al., 2009; Kassem et al., 2004; Elmore et al., 2002).  One study in 

particular involved cells from patients afflicted with Li-Fraumeni syndrome, a disease 

characterized by a high rate of tumor formation due to a germline mutation in the tumor 

suppressor gene p53 (Elmore et al., 2002).  Due to p53’s heavy involvement in the signaling of 

DNA damage including critically short telomeres, it was demonstrated that telomerase 

expression prevented spontaneous immortalization via telomere stabilization. This model 

indicates that the dysfunctional p53 present in Li-Fraumeni cells was incapable of inducing a 

senescent state, allowing for continued telomere erosion.  This erosion (Figure 3) eventually 

leads to telomere dysfunction, chromosomal abnormalities and subsequent immortalization.  By 

expressing telomerase and stabilizing telomeres before the cells were subject to genetic 

alterations, these cells were protected from tumor formation.  These data support the idea that 

telomerase and telomeres are in fact primarily protective in nature.  The expression of 
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telomerase, even in cells taken from people predisposed to premature tumor formation, 

abrogates, not causes, tumor progression.   

 

 hTERT regulatory networks 

The promoter region of hTERT was characterized and independently published by a few 

groups in 1999 and the results hinted at multiple possible mechanisms of control, which could 

vary depending on the cell or tissue type (Cong et al., 1999; Wick et al., 1999),.  The promoter 

was found to contain a TATA binding box, being primarily composed of heavy GC rich regions 

making up large CpG islands surrounding the ATG start site (Cong et al., 1999). To discover 

which regions encompassing the core promoter were most influential on hTERT expression 

deletion analysis was performed, showing that the largest reduction of activity was seen when 

the deletions fell into regions approximately ~300 bp upstream of the ATG start site (Cong et al., 

1999; Wick et al., 1999).  Further analysis of this “core promoter region” revealed two E box 

binding regions at  -34 and -242, which were found to associate with a few different transcription 

factors (Takakura et al., 1999) (Figure 5) and included direct repressive activities from 

transcription factors such as Mitotic arrest deficient-like 1 (Mad1l) and Upstream activating 

factor (USF.  Indirect mechanisms of repression were also found through factors such as Tax and 

Receptor CK (Sikand et al., 2006; Gabet et al., 2002).   Activation through interaction with the E 

boxes was also associated with the binding of transcription factors such as the myelocytomatosis 

viral oncogene homolog (C-MYC) (Latil et al., 2000; Günes et al., 2000), and USF1/2 

(Horikawa et al., 2002) (Figure 5).  C-MYC was of particular interest as it is a potent oncogene 

over expressed in many cancers (Suárez, 1989).  Its role at the hTERT promoter is still  
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Figure 5: The hTERT promoter.  The hTERT promoter has many sites for different 
mechanisms of activation and repression.  Illustrated here is a selection of factors shown to have 
some direct binding and activity.  Listed above each line are known activators, while those listed 
below the line are known repressors.  The core promoter region encompassing approximately -
300 to +25 of the ATG start site is highlighted and expanded for better resolution (Deprynski  et 
al., 2008) 
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controversial as some studies have shown a strong activation effect when C-MYC is 

exogenously expressed in certain cell types, while others showed no such activiation (Oh et al., 

1999).  This activation was in contrast to that of Mad1, whose activity was shown to primarily 

act as an antagonist of C-MYC, competing for both heterodimerization with Max and binding to 

the E-boxes to down-regulate telomerase activity (Cerni et al., 2002; Oh et al 2000).  

The E box was also shown to have an indirect interaction with a few other factors, such 

as the breast cancer susceptibility gene BRCA1.   Its ability to activate telomerase was focused 

around some mutant forms of the BRCA1 protein, these mutations abrogate its binding to C-

MYC, perhaps allowing for it to have more bioavailability and thus more activation of hTERT 

transcription in tumors (Li et al., 2002; Xiong et al., 2003). The core promoter was further shown 

to carry five GC boxes.  These binding sites were shown to interact with a variety of different 

factors including Sp1, p53 and E2F-1 (Figure 5) (Cong et al., 1999; Wick et al., 1999).  Sp1 was 

found to act primarily as a repressor, as it binds and recruits both histone de-acetylase complexes 

(HDAC) and p53 to the hTERT promoter (Won et al., 2002).  In contrast, Sp1 was also found to 

have the ability to upregulate expression through interactions with C-MYC (Oh et al., 2001; Kyo 

et al., 2000).  One studied showed that through mutational analysis of regions of the promoter, C-

MYC activation was dependent on the presence of functioning GC boxes (Drissi et al., 2001).   

Other control mechanisms were also seen at the epigenetic level, including methylation of the 

CpG islands surrounding the ATG start site and the modification of histone tail residues.  CpG 

islands are stretches of DNA with a high guanine and cytosine nucleotide content.  These CpG 

residues are susceptible to modification of the cytosines 5’ carbon of its pyrimidine ring via the 

addition of a methyl group (Sharma et al., 2009).  DNA methylation usually has a repressive 

effect, preventing the binding of activating factors or allowing the binding of methylation-specfic 
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transcriptional repressors (Lafon-Hughes et al., 2008).  On the hTERT promoter however, sites 

could be either hypermethylated or hypomethylated largely dependent upon the cellular 

environment (Dessain et al., 2000).  Some repression appeared to be due to the methylation of 

transactivating factor’s binding sites (Guilleret et al., 2004), while activation was seen due to the 

methylation of a putative repressor’s binding site (Iliopoulos et al., 2009).  Both mechanisms 

proved to be highly variable and inconsistent however, as the distinction between an active and 

repressive state did not correlate with any discernable methylation pattern (Guilleret et al., 2004; 

Iliopoulos et al., 2009). It was also found that modifications of histones, specifically the 

acetylation, methylation and phosphorylation patterns on exposed N-terminal tails, plays a role in 

the modulation of  hTERT gene expression in some cancer cells (Cong et al., 2000; Won et al., 

2002; Lv et al., 2003). Histones are multi-protein, heterodimerized complexes found i 

nucleosomes, which are primarily comprised of two histone H3 proteins, two histone  H4 

proteins, 1 histone H2a protein, 1 histone H2b, a histone H1 linker, and approximately 200bp of 

coiled DNA.  In total this makes the entire protein complex approximately 130 KDa in size.  The 

N-terminal residues of histones are typically exposed to the nuclear environment, and many 

studies have shown that particular patterns of modifications on these residues can alter the 

protein’s overall conformation (Hon et al., 2009).  The shift in conformation is dependent upon 

the particular residues being modified and the type of modification, causing the histone to either 

physically loosen or tighten its binding to the DNA (Hadnagy et al., 2008).  This physical 

alteration hinders transcriptional machinery from interacting with the nucleosomes DNA.  These 

tail residue modifications create what is called the “histone code” regulating the ability for genes 

to be expressed simply based on the ability for factors to gain access to the promoter region 

(Berger, 2007) (Figure 6). This “histone code” was examined during the differentiation of the  
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Figure 6: “The Histone Code.” Histone modification and the subsequent condensation or 
relaxation of chromatin is one epigenetic modification that regulates gene expression.  The 
patterns highlighted above are modifications most often observed during histone relaxation and 
gene activation or condensation and gene repression.  Highlighted are a few proteins involved in 
the process of a chromatin repressive (condensed) state, including histone deacetylase complexes 
(HDAC) and histone methyl transferase (HMT), as well as during the process of an active 
chromatin (relaxed) state, including histone acetyl transferase (HAT) and lysine specifc 
demethylase (LSD1).  
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hTERT-expressing promyelocytic leukemia cell line HL-60 (Love et al., 2007; Xu et al., 1999). 

Upon differentiation of these cells by exposure to compounds such as dimethyl sulfoxide 

(DMSO) or retinoic acid causes the down-regulation of hTERT.  During differentiaion, the 

lysine tail residue K9 on histone H3 was deacetylated and di- or tri-methylated at the hTERT 

promoter, which indicated that the chromatin was in a condensed state (Love et al., 2007; Xu et 

al., 1999) (Figure 6). This histone modification correlated with hTERT’s progressive 

deactivation during differentiation of HL-60 cells (Ge et al., 2006). Once this heterochromatin 

state was achieved, the phosphorylation of the nearby tail residue serine 10 on H3 was further 

shown to allow for the binding of heterochromatic protein 1 (HP1) (Ge et al., 2006)), which has 

been implicated in maintaining heterochromatic state (Gwen et al., 2006; Dormann et al., 2006) 

(Figure 6).  Of the three isoforms of HP1 (alpha, beta and gamma) HP1α and HP1β seem to be 

the causative members in chromatin binding in telomeric regions where the hTERT promoter is 

located (5p15.33) (Gwen et al., 2006; Dormann et al., 2006).  The opposite “histone code” was 

also seen in HL-60 cells. When in an undifferentiated state, the hTERT promoter was associated 

with acetylated H3K9, a modification indicative of an open conformation (Figure 6).  This 

modification correlated with the continued expression of telomerase (Cong et al., 2000).  

While the hTERT promoter has been cloned and sequenced, its regulation through 

transcriptional activation and repression is still underdeveloped.  Many studies done to elucidate 

its activation used primarily artificial reporter systems (Ahmed et al., 2003; Janknecht, 2004). 

Most have been conducted in cancerous lines as well, which largely ignores hTERT’s regulation 

during the normal aspects of development and in normal adult tissues.  To examine the 

regulation of hTERT in a non-cancer setting poses a challenge as most cells, which express 

telomerase are derived from cancerous growths.  Of the non cancerous cells one of the most 
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promising cells for the study of hTERT are stem cells of various origins.  Some adult stem cells 

have been shown to express low levels of hTERT while many others expression status is still 

debatable (Serakinci et al., 2007). 

 

Bone Marrow Mesenchymal Stem Cells 

 One of the first examples of stem cell research was attempted in the early 1960’s 

by Till et al. at the University of Ontario, Canada (Till et al., 1964), where they described a 

population of cells taken from the bone marrow of mice. These cells, when injected into the tail 

vein of another mouse, would form colonies in the spleen correlating to the exact number of cells 

injected.  These colonies were shown to come from a single cell and, as they hypothesized, were 

progenitor cells of the hematopoietic compartment. Due to the nonproliferative nature of many 

cells such as erythrocytes and mature granulocytes, they theorized that these cells existed for the 

replacement of lost or damaged hematopoietic tissues (Siminovitch et al., 1964; Till et al., 1964). 

They further began to define the characteristics of a stem cell by making guidelines to highlight 

their capacity: they must have high proliferative capacity, must retain the ability to differentiate 

into other cell types, and must be capable of self-renewal (Till et al., 1964).  These guidelines 

persist today as the two defining features of stem cell populations, the ability to divide 

symmetrically (into identical daughter cells) and the capacity for asymmetric division (into 

differentiated cells) (Till et al., 1964; Figure 7).  In 1974, Friedenstein et al. further examined 

these same cells using an in vitro mechanism to assess colony formation (Friedenstein et al., 

1966; Friedenstein et al., 1974; Luria et al., 1971). They determined that following irradiation, 

the cellular viability and regeneration of cells in the bone marrow were due to these CFU (colony 

forming unit) cells, and as a result of their studies, they began referring to these  
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Figure 7: Mesenchymal Stem Cell Multipotential.  MSCs are capable of differentiation into 
multiple lineages.  They also retain the ability to divide both symmetrically, to produce identical 
daughter cells and asymmetrically (to produce differentiated lineages).  MSCs, to date have been 
shown to differentiate into tendon, adipocyte, fibroblast, osteocyte, chondrocyte, myocyte, and 
some less frequent reports of non-mesencymal cells such as neuronal cell lineages and pancreatic 
β-islet cells. 
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cells as colony forming unit-fibroblasts (CFU-F).   Many names would follow including marrow 

stromal cells, multipotent adult progenitor cells and finally in 1991 by Caplan et al. the term 

mesenchymal stem cell (MSC) (Caplan et al., 1991).  This term was eventually adopted by most 

in the field due to growing evidence that the cells origins were from the mesodermal germ layer.  

One of the main adult stem cells studied in modern science was found, bone marrow 

mesenchymal stem cell or BMMSC.  These cells, which Caplan and Friedenstein had been 

studying, were subsequently shown to have a multipotent ability to differentiate (Wakitani et al., 

1994; Vilamitjana-Amedee et al., 1993).  These cells primarily had the capacity to turn into 

osteocytes, chondrocytes, adipocytes, and myocytes (Wakitani et al., 1995; Muraglia et al., 

2000) and with some reports surfacing indicating some non-mesodermal cell fates as well 

(Woodbury et al., 2000; Chen et al., 2004; Figure 7). Following this, the definition for the 

differentiation capacity of a stem cell centered around the number of lineages it was capable of 

following.  The cells present in the zygote were described as totipotent, having the capacity to 

differentiate into all cell lineages including the extra-embryonic tissues. The cells of the 

blastocyst (discovered and isolated later) were described as pluripotent, capable of differentiating 

into all three germ layers.  The last three categories typically describe the more limited potential 

adult stem cell, multipotent being capable of differentiating down more then two lineages, 

bipotent down two and unipotent directed into a single lineage.  These differentiation capacities 

distinguish these cells from another adult stem cell, hematopoietic stem cells. Hematopoietic 

stem cells are also found in the bone marrow. However, their capacity to form cells is limited 

solely to blood-related lineages, which will not be covered extensively here. 

Following a surge in research interest in the late 1990’s and into the new millennia, there 

exist many groups generating very intriguing data in diverse fields related to adult stem cell 
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biology.  Much of these studies have been focused around the use and description of the 

BMMSC that were originally described in the 1960’s (Till et al., 1964; Friedenstein et al., 1966).  

These cells are primarily extracted and isolated from the iliac crest of marrow donors.  Briefly, a 

general or local anesthesia is used, dependent on the quantity being extracted, a large coring 

needle is used to suction out the bone marrow, typically at multiple puncture sites for a complete 

transplantation.  This is then filtered, and if used therapeutically, it is given to a recipient 

following an ablative treatment of chemotherapy or radiation therapy to remove all traces of the 

patient’s dysfunctional stem cells.   The infusion is then given through an IV drip placed inside 

the patient’s chest cavity into the superior vena cava where the cells are allowed to migrate 

through the body and take up residence in the now vacant bone marrow cavity (Smiler et al., 

2006).   If the cells are to be used for research purposes, the aspirate is filtered and plated on 

culture dishes in serum supplemented media. Cells will then adhere to the plate and begin to 

grow (Tocci et al., 2003).  Much of what is known about these cells comes from bone marrow 

use as a means to cure many diseases.   

It is interesting to note that the bone marrow compartment has only in recent years 

become more thoroughly understood, eventhough the first successful treatment of a disease 

through bone marrow transplantation was performed in the 1960’s (Kersey et al., 1968).  These 

transplantations have since been used to treat a diverse spectrum of diseases, including leukemia, 

aplastic anemia, lymphomas, multiple myeloma, immune deficiency disorders, as well as to 

replenish cells after toxic cheomotherapies in some breast and ovarian cancer (Battiwalla & 

Hematti, 2009). In vitro, BMMSC have been shown to be relatively stable, maintaining good 

chromosomal stability with continued passaging and retaining a normal cellular phenotype 

(Garayoa et al., 2009).  With this lack of transformation ability, these cells have been justified as 



www.manaraa.com

 

 22 

a cellular source for regenerative medicine applications.  One difficulty with BMMSCs is the 

method by which they are obtained, being relatively painful and not a procedure people do on an 

elective basis.  It has also been shown that these cells lack a mechanism for the maintenance of 

telomeres, and any culturing of these cells, ultimately limits their in vivo proliferative potential. 

 

Adipose-derived Mesenchymal Stem Cell  

Following the discovery of the resident population of mesenchymal stem cells in the bone 

marrow, many groups began searching for other adult stem cell niches in the body.  Many 

sources began appearing including stem cells described in the cord blood (Jäger et al., 2009), in 

peripheral blood (Herbein et al., 1994), in human dental pulp (Jo et al., 2007), amniotic fluid 

(You et al., 2008), and even from menstrual blood (Patel et al., 2008).  In 2001 another resident 

tissue type was discovered by Zuk et al. 2001, Adipose-derived Stem Cells (ASC).  These cells 

are primarily isolated from discarded post-operative waste from individuals undergoing 

liposuction or abdominoplasty.   The liposuction procedure, typically focused on the sections 

around the abdomen and buttocks, yields on average a few liters of adipose tissue.  Following the 

initial liposuction, the tissue is processed via a few centrifugation steps and a collagenase 

digestion into what is called the stromal vascular fraction (SVF) (Figure 8; Zuk et al., 2001).  

This portion of the tissue is primarily comprised of any remaining blood cells and mononuclear 

fibroblastic-like cells.  The SVF is then subject to a red blood cell lysis buffer and the remaining 

stromal cells are then allowed to adhere to tissue culture plastic overnight.  This step allows for 

any remaining buoyant cell types such as adipocytes and red blood cells to be washed away 

(Figure 8; Zuk et al., 2001).   
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Figure 8: ASC primary isolation procedure.  Tissues are harvested from either 
abdominoplasty sections or from liposuction waste.  These unprocessed tissues are washed and 
subjected to a collagenase digestion, which results in a mixture with a soup-like consistency. 
This cell suspension is then centrifuged to separate the adipocyte layer from the stromal 
vasculature fraction (SVF).  The SVF is then subjected to a red blood cell lysis, filtered and the 
mononuclear cells are isolated via a Percoll gradient.  Finally, these mononuclear cells are plated 
in high serum media overnight to allow for attachment and subsequent subculturing. 
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Following plating and a few days of washing what remains was described as a population of cells 

closely mimicking the morphologies of bone marrow-derived mesenchymal stem cells.    Their 

abundance, however, was on the order of 100 fold higher then those isolated from a similar 

volume of bone marrow tissue.  These cells were subsequently shown to differentiate into 

osteocytes, chondrocytes, adipocytes and myocytes, proving their multipotencyl. These ASCs 

also grew at a much faster rate, and with a more robust ability to differentiate at older population 

doublings (Zuk et al., 2001). With the discovery of ASCs, many believe the use of BMMSC 

should be replaced (Zhu et al., 2008).  Their obvious advantages being: their acquisition through 

an elective outpatient procedure, which occurs on a daily if not hourly basis in the US, with most 

of the removed tissue being waste; these procedures yield a high volume of cell/tissue; and the 

cells have the ability to differentiate better at higher passages then BMMSC (Zhu et al., 2008; 

Peng et al., 2008).  These facts should allow ASCs to become a primary source of adult stem cell 

therapies, however, these cells have been shown to have a few negative properties, which infer 

caution.  ASCs have been shown by some labs to undergo spontaneously transformation at 

higher passages (Rubio et al., 2005) and have also been shown to express telomerase (Lin et al., 

2008; Peng et al., 2008).  These observations are somewhat controversial as many groups have 

reported no such transformation (Kang et al., 2004; Kassem et al., 2004), claiming these cells do 

senesce similar to BMMSC, just at a higher passage.  While the presence of telomerase is viewed 

as somewhat of a negative due to its involvement in cancer progression, its expression from a 

tissue engineering standpoint would be a benefit (Kang et al., 2004; Kassem et al., 2004).  For in 

vitro or in vivo tissue regeneration, there is a need for the cells to divide multiple times in order 

to fully replace or form new tissue.  Following so many divisions, the cells may undergo 
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telomere-based senescence, making their viability after transplantation extremely limited 

(Garcia-Olmo et al., 2009). 

 Adult stem cells present a unique opportunity for autologous transplant therapies. This 

strategy of rejuvination therapy circumvents host vs graft disease and is capable of 

supplementing many damaged tissues if necessary.  The limitations of this strategy is also 

stunted by a few negative aspects including the cells inability to differentiate into all types of 

tissues.  These cells are also subject to culturing sensitivity and will senesce due to their lack of a 

telomere maintenance mechanism.  For a universal solution, it would be necessary to further 

elucidate the mechanisms of hTERT regulation in an attempt to maintain cells for extended 

periods of time and to discover mechanisms to create more cellular lineages. 

 

Embryonic and Induced Pluripotent Stem Cells 

 One of the first observations of pluripotent ability was made in reference to a type of 

cancer, teratocarcinoma (Beck et al., 1969). These tumors were found to grow all three of the 

germ layers when removed from patients. These cancerous cells laid the foundation for many 

culturing techniques and importantly set the standard for pluripotent potential with the ability to 

turn into all three germ layers in vitro (Lehtonen et al., 1989). These studies led to what has 

become a more common test of a cell’s in vivo pluripotent ability, the injection of cells into 

athymic nude mice. Once injected, cells are allowed to grow, and then the mass is assessed for 

different lineages.  The first embryonic stem cell (ESC) isolation was from mouse embryos, 

described in a paper published in 1981 by Gail Martin (Martin, 1981).  This isolation involved 

the removal of the inner cell mass of late stage blasocysts from early implantation mouse 

embryos. These first embryonic stem cells were dependent on a feeder layer culturing system 
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using inactivated fibroblast cells (Pantazis et al.,1985),  which allowed for the ESCs to adhere to 

the plate and maintain an undifferentiated state, theoretically due to the extracellular matrix and 

growth factors the fibroblasts secrete.  

Following the successful study of mouse ESCs, there were many attempts to isolate 

similar cells from human blastocysts. There was little success until 1997, when Dr. James 

Thomson from the University of Wisconsin in Madison, WI reported that he had successfully 

generated human ESCs (Thomson et al., 1998).  These cells acted very similarly to the mouse 

embryo derived ESCs, with the capacity to maintain an undifferentiated state in vitro when 

cultured continuously while retaining some hallmarks of pluripotency. These hallmarks included 

the expression of alkaline phosphatase, stage specific embryonic antigen (SSEA) 3 and 4, TRA-

1-60 and TRA-1-81 (Thomson et al., 1998).  The cells also expressed the crucial enzyme 

telomerase in quantities sufficient to maintain their telomeres, and allow them to be continuously 

cultured without cellular senescence.  These cells demonstrated the ability to differentiate into all 

three germ layers through the teratoma test via injection into severe immune combined 

difficeient (SCID) mice.  This discovery created enormous interest and opened up the possibility 

of generating any tissue type that was needed.  Therapies for many different diseases would 

benefit from this work, such as spinal cord damage, Parkinson disease, diabetes, and many more.  

To progress into therapeutics using these cells as a tissue substrate, there are many 

obstacles to overcome. One is the xenobiotic contamination of ESCs due to the necessity of a 

mouse feeder layer to maintain a proliferative undifferentiated state (Mallon et al., 2006).  

Another serious scientific hurdle is the difficulty of immune rejection if these cells were to be 

used therapeutically, as harvested in vitro fertilized blastocysts would not be autologous when 

used for a variety of patients (Findikli et al., 2006; Rippon & Bishop, 2004).  To get ESCs to this 
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therapeutic, homogeneously differentiated end point is also difficult, as injecting any 

undifferentiated ESCs could pose a potential for teratoma formation (Rippon & Bishop, 2004).  

And finally, one of the biggest problems occurred in 2001, when then President George Bush in 

a national broadcast claimed any newly generated ESCs would be amorally obtained, and signed 

legislation limiting publicly funded research on ESCs to strains that had already been isolated. 

ESC usage suddenly came under extreme scrutiny and their utilization became a subject of 

debate as fevered as abortion. This legislation stunted ESC research for the next eight years in 

the public sector. 

To address the difficulty of immune rejection, many studies were conducted to describe 

the cells immuno-reactivity (Lui et al., 2009).  Reports initially emerged that embryonic stem 

cells could be immune privileged due to their reduced expression of major histocompatibility 

complexes (MHC) class I and an absent expression of MHC class II expression on their surface 

(Drukker et al., 2006; Drukker & Benvenisty, 2004).  This led to studies indicating that 

undifferentiated cells had not only an anti-inflammatory response when injected into immune 

competent mice (Li et al., 2004), but also seemed to be compatible upon a brief differentiation 

and subsequent implantation (Drukker et al., 2006).  Much about the immune reactive nature of 

ESCs is still open for debate and study, although it seems unlikely that these cells once fully 

differentiated will function without some sort of host immune response (Drukker et al., 2006; 

Drukker & Benvenisty, 2004).  A better solution to the immune responsive dilemma is a long 

hypothesized process that had originated in studies done on amphibians, Somatic Cell Nuclear 

Transfer (SCNT).  SCNT was first realized in a mammal in 1997 by a group in Scotland led by 

Dr. Ian Wilmut (Ritchie et al., 1996).  The now famous sheep Dolly was created using a somatic 

cell from the udder of a six year old ewe.  This process begins with the enucleation of a donated 
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egg cell or ovum and this genome-free egg is then electrically stimulated in the presence of an 

adult somatic cell causing the two to fuse (Ritchie et al., 1996).  Following this false fertilization, 

the egg began to divide and was shown initially to turn into a viable embryo with all the 

necessary cellular lineages (Ritchie et al., 1996).  This process, although seemingly simple 

sounding, is extremely labor intensive as there was no means for automation, meaning that each 

egg has to be individually fused (Ritchie et al., 1996).  Also, the process was very inefficient, as 

277 eggs were fused in an effort to clone Dolly, which resulted in only 29 viable blastocysts.  Of 

these, only one came to term and produced an adult sheep (Dolly).  This process seemed at first 

to be a viable solution to generate isogenic lines capable of realizing the promise of ESCs 

potential as a therapeutic substrate.   

Unfortunately, this process also had its own caveats, mainly owing to the public’s 

perception on cloning, the need of large quantities of donor eggs and the difficulty encountered 

when cloning of primates was attempted (Fulka & Fulka, 2007).  The process by which human 

eggs are harvested involves the treatment of the donar with high levels of hormones, which leads 

to a state of hyperovulation in which a woman produces as many as 5 eggs at a time (Bodri et al., 

2007).  These hormone treatments have been met with much skepticism in terms of their degree 

of safety, as well as the prospect the demand might create an illicit market for harvesting human 

tissues as it is illegal to purchase human ovum for research purposes (Isasi & Knoppers, 2007).  

The field of SCNT research took a large blow when in 2006, Dr. Woo Suk Hwang, from Seoul 

National University, fabricated data indicating that he had created the long sought after human 

embryonic stem cell from a SCNT procedure (Hwang et al., 2006; Hall et al., 2006).  The cells 

were eventually shown to actually be derived from the process of parthenogenesis, or the 

development of an embryo from an unfertilized egg. This notwithstanding many in the field 
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including Ian Wilmut, have discontinued their research on SCNT due to the discovery of induced 

pluripotent stem cells (iPS). 

The discovery of iPS cells began with research conducted on embryonic cells to elucidate 

the necessary genetic factors to maintain a state of pluripotency (Rao et al., 2004; Buehr et al., 

2003; Chambers et al., 2003).  Many studies found that there exists a compliment of genes that 

were crucial for maintaining a pluripotent state.  Of these genes, three were discovered to be 

essential, Oct-4, Sox2, and NANOG (Loh et al., 2006).  Oct-4, or Pou5f-1, is a homeodomain 

transcription factor of the POU family,  which binds to the octamer motif on DNA (5'-

ATTTGCAT-3') and has been shown to regulate many genes that are critically involved in the 

maintenance of  ESCs in an undifferentiated state (Berrill et al., 2004).  SOX2, or sex 

determining region Y box -2, is a transcription factor and a key regulator of embryonic 

development and cellular differentiation.  Finally, NANOG is also a homeodomain transcription 

factor that has been shown to be pivotal in embryonic development and in the maintenance of a 

dedifferentiated state (Cavaleri & Schöler, 2003).  These factors were revealed to co-regulate one 

another (Figure 9), as a heterodimer Oct-4 and SOX2 have been reported to bind to the NANOG 

promoter, while the Oct-4/SOX2 heterodimer also has a self regulatory mechanism by binding to 

both promoter regions (Boyer  et al., 2005; Wang et al., 2006; Figure 9).  This interconnected 

regulatory network is thought to function as a transcriptional loop, maintaining the necessary 

levels of all of the genes to allow for the undifferentiated state to persist (Boyer  et al., 2005).  

While these genes regulatory mechanisms have been studied extensively, hTERTs regulation has 

yet to be studied in detail in ESCs.  Its role in the maintenance of a pluripotent state is pivotal as 

ESCs were shown to undergo differentiation upon inhibition of hTERT  
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Figure 9: Pluripotent Gene Regulatory Network.  Oct-4 and SOX2 heterodimerize and 
regualate both their own transcription as well as NANOGs. NANOG binds to both the Oct-4 and 
SOX2 promoters also increasing their transcriptional levels. Together these genes create a 
genetic network up-regulating embryonic specific-genes, allowing for the pluripotent stem cell 
phenotype.   
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(Yang et al., 2008). This indicated that beyond hTERT’s ability to maintain an immortal state, it 

also may have a more direct involvement in the necessary cellular environment for pluripotency. 

 In 2006, Dr. Shinya Yamanaka and Takahashi made a pivotal discovery when they stably 

infected both embryonic and adult fibroblasts with Oct4, Sox2, Klf4 and C-MYC (Takahashi & 

Yamanka, 2006).   They showed that with the stable integration and up-regulation of these genes 

in normal mouse fibroblast cells, they could generate colonies of pluripotent cells, termed 

induced pluripotent stem cells (iPS).  These iPS cells were subsequently shown to be capable of 

differentiating into all 3 germ layers using the same teratoma forming assay, used to demonstrate 

ESCs pluripotency.  And more importantly, when injected into blastocycts and implanted back 

into the womb, these cells were able to create chimeric mice with gametes capable of generating 

offspring entirely comprised of the iPS cells.  One major caveat in creating these cells was the 

fact that overexpression of C-MYC, a potent oncogene was used for the process. As anticipated, 

it was shown that mice created from iPS cells generated using the C-MYC oncogene, had 

extremely elevated incidence of cancer, with all of the mice generated developing tumors.  

Fortunately C-MYC was shown to be dispensable for iPS generation, as the Yamanaka group 

subsequently showed iPS formation, albeit with lower efficiency,  using just Oct-4, Sox2, and 

KLF4 (Nakagawa et al., 2008).  The initial discovery of iPS cells was quickly followed by other 

groups performing similar induction procedures on human adult fibroblasts, with the Thomson 

lab using Oct-4, Sox-2, Nanog, and Lin-28 (Yu et al., 2007).  These discoveries led to a veritable 

onslaught of new data, with many labs analyzing different mechanisms to induce pluripotency, 

including transient viral expression systems (Stadtfeld et al., 2008) and non-viral mechanisms 

((Yu et al., 2009; Kaji et al. 2009). Of particular interest is the status of hTERT during this 

induction process.  Derived from normal, non-telomerase expressing cells, these cells undergo 
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many changes to allow for the cell to shift to a more primordial state, including the activation of 

hTERT.  While many studies have addressed the fact that this enzyme exists and some studies 

going so far as to induce its expression as a means to make cells more susceptible to iPS 

formation (Park et al., 2008), there is still much to discover about its role in this process and its 

regulation.  Significant research has been dedicated to examining which of the factors are 

necessary for iPS formation, including some showing a very minimal set of genes as necessary 

(Nakagawa et al., 2008; Huangfu et al., 2008).  One such study used only two factors 

successfully, Oct-4 and SOX2, this coupled with a histone deacetylase complex (HDAC) 

inhibitor, valoproic acid (VPA) (Huangfu et al., 2008).  VPA is one of a family of compounds 

capable of preventing the action of HDACs, causing a general relaxation of the chromatin.  VPA 

specifically inhibits HDAC1, while many other compounds of its type inhibit a broader range of 

HDACs such as trichostatin A (TSA), which potently inhibits almost all of the HDAC families. 

 

Study Rationale  

 Telomerase expression has been a subject of interest to many research groups, with many 

advances in our understanding of how it is regulated occurring in the last decade (Lv et al., 2003; 

Won et al., 2002; Xu et al., 1999; Cong et al., 1999; Drissi et al., 2001; Latil et al., 2000).  The 

vast majority of these studies focus on cancer due to hTERT’s expression in over 90% of tumors.  

These studies have since led to many theories about the use of hTERT as a therapeutic target to 

combat tumorgenicity (Chen & Tollefsbol, 2009).  While telomere maintenance is the primary 

source of immortalization in cancers, hTERT expression is still only a necessary but not 

causative. In fact, studies indicate that telomere elongation and stabilization through hTERT 

expression preventing telomere dysfunction, could serve as a means of protection against tumor 
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formation (Elmore et al., 2002). Telomerase activity is strictly regulated in most somatic cells, 

yet hTERT becomes active again in immortalized cells and seems to remains active in some 

proliferating adult stem cell populations. While there have been reports in the literature that some 

adult stem cells populations do express hTERT, this finding is controversial and if present may 

be insufficient to maintain telomere lengths with continued proliferation (Lin et al., 2008; Peng 

et al., 2008). With the lack of a telomere maintenance mechanism, adult stem cells are subject to 

a limited proliferative life span. Thus, during the process of aging, slow erosion of telomeres 

over time within the stem cell populations will eventually lead to a senescent state.  Once a 

critical amount of resident stem cells reach the end of their replicative life span, many tissues 

would go without cellular components to replace lost or damaged tissues.  In particular, this sort 

of degradation can be seen in the premature aging syndromes, described above, such as Werners 

and DKC, which leads to the conclusion that the phenotype observed during the normal process 

of aging is at minimum partially due to the prevention of tissue renewal due to telomere 

dysfunction in replenishing cells. Clearly, telomerase’s function in these stem cells is critical for 

the continued proliferation and their contribution to the constant rejuvenation necessary from 

normal cell turnover. 

In adult stem cells, such as BMMSC and ASCs, hTERT expression status is still 

controversial (Kang et al., 2004; Kassem et al., 2004; Lin et al., 2008; Peng et al., 2008).  While 

some groups claim that hTERT can be used as an efficient marker of stem cell identity, many 

groups have attempted to use immuophenotyping of cell surface markers with variable results 

(Izadpanah et al., 2006; Zuk et al., 2001; Astori et al., 2007; Katz et al., 2005; Kern et al., 2006; 

Leong et al., 2005; Lin et al., 2008; Noël et al., 2008; Rebelatto et al., 2008; Wagner et al., 

2005; Yoshimura et al., 2006; Lin et al., 2008; Zhu et al., 2008). Due to the undefined stem cell 
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immunophenotype and the underdeveloped stem cell gene expression profile, it is still debatable 

how to properly identify stem cells. 

 

We hypothesize that ASCs stem cell-like properties are based upon their multipotential 

abilities and associated gene expression rather than any specific cell surface marker profile.   

  

 During the process of iPS generation, two primary sets of stem cell genes were employed.  

Dr. Yamanaka’s group demonstrated that Oct-4, Sox2, KLF4 and C-MYC are capable of 

dedifferentiation adult cells into an embryonic-like state.  At the same time, Dr. Thomson’s 

group demonstrated that a set of genes including Oct-4, Sox2, NANOG, and Lin28 were capable 

of performing the same process.  In both studies, these groups demonstrated that these four 

factors were capable of generating embryonic-like cells that importantly expressed the catalytic 

component of telomerase, hTERT.   The mechanism behind this activation has yet to be studied.  

The genes used by the Yamanaka group at first included the oncogene C-MYC.  Its involvement 

in many cellular processes has been examined including direct targeting of the hTERT promoter 

by C-MYC in some cell types (Drissi et al., 2001; Kyo et al., 2001).  However, the Thomson 

group showed that their factors are capable of creating iPS cells that express hTERT without the 

infection of C-MYC.   

 

 We hypothesize that the introduction of the iPS genes Oct4, SOX2, NANOG and 

Lin28 create changes in transcriptional regulators and the chromatin structure at the hTERT 

promoter. These epigenetic changes cause the acetylation/de-methylation of specific 
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histone tail residues resulting in the relaxation of the hTERT promoter, increased access for 

transcription factors and the subsequent expression of the hTERT gene. 

 

The data generated by these studies will lead to a better understanding of the many complicated 

mechanisms by which hTERT is regulated.  These studies will allow for the advancement of 

important knowledge relating to the proper identification and functional analysis of the diverse 

population of the differing stem cells, both adult and embryonic.  The results obtained could 

potentially lead to improved stem cell-related treatment for many diseases related to the natural 

process of aging. Also these studies will advance the use of telomerase for regenerative therapies 

for diseases that currently use non-hTERT expressing adult stem cells as cellular substrates.  
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Chapter 2 

Functional Stem Cell Classification of Adipose-Derived Stromal Cells 

 

Abstract 

 The discovery of ASC has created many opportunities for the development of patient-

specific cell-based replacement therapies with a higher efficiency than the standard adult stem 

cell, BM-MSC.  To further define these cells, we have isolated multiple cell strains from 

different adipose tissue sources, indicating wide-spread distribution in the body.  Unfortunately, 

there exists a general lack of agreement in the literature as to their surface characteristics. We 

find that a widely used set of cell surface markers fail to distinguish ASCs from normal 

fibroblasts, as both are positive for CD29, CD73,  and CD105 and negative for CD45, CD31, and 

CD14.  All of the ASC isolates are multipotent and capable of differentiating into osteocytes, 

chondrocytes and adipocytes, while fibroblasts show no differentiation potential.  In further 

contrast to fibroblasts, these cells also show expression of genes associated with pluripotent 

cells, Oct-4, SOX2, and NANOG.  These pluripotent factors are expressed at significantly higher 

levels than in fibroblasts and BM-MSC, yet are still lower than induced pluripotent stem cells 

(iPS).  Finally, we find undetectable levels of the catalytic component of telomerase, hTERT, in 

the ASCs independent of age and culturing conditions. ASCs undergo telomere attrition and 

eventually senesce, while maintaining a stable karyotype without the development of any 

spontaneous tumor-associated abnormalities. Together, our data suggest that while the cell 

surface profile of ASCs does not distinguish them from normal fibroblasts, the expression of 

genes closely linked to pluripotency, and their differentiation capacity clearly define ASCs as 

multipotent stem cells. 
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Introduction   

The utility of adult stem cells presents a unique opportunity for the development of low 

cost, low risk methods to treat diseases using patient-specific cells.  Current techniques employ a 

generally low yield isolation protocol for BM-MSC from the iliac crest of the pelvis (Izadpanah 

et al., 2006), which is an invasive and painful procedure.   More recently, a cell type similar to 

BM-MSC was discovered residing in fatty deposits removed during elective lipoaspiration 

surgeries.  These cells, appropriately named adipose-derived stromal cells (ASC),  can be 

isolated in much higher efficiency relative to the BM-MSC isolations (Zuk et al., 2001), have a 

greater expansion capacity, and appear to differentiate efficiently into the same cell lineages as 

BM-MSCs (Zuk et al., 2001).  Following their discovery, the stem cell-like qualities of ASCs 

came under scrutiny as their identity and characteristics were still being determined.  Many 

groups have attempted to define a specific set of cell surface markers to purify ASCs from the 

complex mix of cells in the stromal vascular fraction (SVF) isolated from lipoaspirate.  A variety 

of combinations have been attempted (Izadpanah et al., 2006; Zuk et al., 2001; Astori et al., 

2007; Katz et al., 2005; Kern et al., 2006; Leong et al., 2005; Lin et al., 2008; Noël et al., 2008; 

Rebelatto et al., 2008; Wagner et al., 2005; Yoshimura et al., 2006; Lin et al., 2008; Zhu et al., 

2008) with varying results, but a general lack of agreement exists as to which of these factors are 

the most relevant.  

Accumulating evidence has been generated in an attempt to identify more of ASC’s 

properties, including their resident niche, their stability in culture, and their gene expression 

profile (Lin et al., 2008; Izadpanah et al., 2006).  A few investigators have shown that some 

SVF-derived cells undergo spontaneous transformation and/or aneuploidy with continuous 

culture, (Rubio et al., 2005) while others show no such potential (Abdallah et al., 2005; Fu et al., 
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2001; Zhu et al., 2008).  Interest also exists in determining a set of genes such as Oct-4 and 

hTERT that would suggest these cells as more embryonic-like than the morphologically similar 

fibroblast cells,. Very few investigators have reported that ASCs express hTERT and some show 

expression of genes associated with pluripotency such as Oct-4. (Pochampally et al., 2004; Lin et 

al., 2008; Fu et al., 2001; Zhu et al., 2008). The indication that ASCs express markers of 

pluripotency suggests that these cells have characteristics similar to ESCs while maintaining the 

mesenchymal state of normal fibroblasts. 

Using multiple ASC isolations, we demonstrate that the expression of a set of cell surface 

markers is similar for both ASCs and fibroblasts, indicating that this primary experimental 

method for defining stem cells likely does not depend on its cell surface characteristics.  In order 

to more accurately define the stemness of our ASC cultures, we assessed differentiation capacity 

and the expression profile of a subset of genes associated with pluripotency, which provided 

evidence of their multipotency and stem cell qualities. 

 

Materials and Methods 

ASC isolation 

Isolation was carried out as described previously (Zuk et al., 2001) except where noted.  

Freshly harvested fat was obtained and immediately subject to isolation.  Any separated oil was 

removed from the top of the lipoaspirate followed by the removal of the saline/blood fraction. 

For ASC 12s and 4s strains, we modified the protocol by removing the saline fraction to a 

separate conical and pelleting the cells as previously described (Francis et al., 2010).  Briefly, the 

pellet was washed once in 1X PBS and then subjected it to red blood cell lysis using 160mM 

NH4Cl incubated at room temperature for 10 minutes. The treated saline fraction was filtered 
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through a 100µm mesh (BD Bioscience, Mississauga, ON, CAN), pelleted and resuspended and 

plated in 25ml DMEM/F12 supplemented with 50% Fetal Bovine Serum (FBS) (Invitrogen, 

Carlsbad, CA) and 1% antibiotic/antimycotic (ABAM) (Invitrogen), 10ng/mL epidermal growth 

factor (EGF) (BD Bioscience, Mississauga, ON, CAN).  For the remaining strains, the fat was 

separated into 200ml aliquots washed 3-4X with equal volume 1X PBS, and then resuspended in 

50% volume 150µg/mL collagenase (Sigma, St. Louis, MO) with 1% antibiotic/antimycotic.  

This solution was incubated for 60 minutes in a 37°C shaker set at 250rpm. When the fat was 

digested sufficiently into a soup-like consistency, it was removed, and the collagenase was 

inactivated with 10% FBS.  The digestion was then distributed into 50ml conicals and 

centrifuged at 1000xg for 10 minute to separate the oil and remaining fat lobules from the 

stromal vascular fraction (SVF).  Once the SVF has been isolated, it was treated with 160 mM 

NH4Cl to lyse red blood cells and applied to a Percoll gradient to purify the mononucleated cells.  

This fraction of mononuclear cells was then resuspended in 25ml DMEM/F12 supplemented 

with 50% FBS, 1% ABAM, and 10ng/mL EGF, and allowed to incubate overnight to select for 

adherence.  The remaining floating cells were aspirated off the following day, and the plate is 

washed to remove any remaining red blood cells or fat lobules.      

 

Cell Culture 

Adipose stem cells were maintained in DMEM low glucose supplemented with 10% 

FBS, 1% antibiotic/antimycotic, and 10ng/ml at 5% CO2 at 37°C. IMR90, a fetal lung fibroblast 

(CCL-186, ATCC Manassas, VA) and BJ fibroblasts cells (CRL-2522, ATCC) post natal 

foreskin fibroblasts, were cultured in DMEM high glucose supplemented with 10% cosmic calf 
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serum (Thermo Scientific, Waltham, MA), 3% Media 199 (Invitrogen, Carlsbad, CA) and 1% 

ABAM (Invitrogen). 

Induced pluripotent stem cells and embryonic stem cells were maintained on an 

mytomycin C (Sigma) inactivated mouse embryonic fibroblasts monolayer, in knock out 

replacement media containing DMEM/F12, 20% KoSR (Invitrogen), 1% Penicillin/streptomycin 

(Invitrogen), 1% non-essential amino acids (Invitrogen), 0.1mM β-Mercaptoethanol (Sigma), 

and 4ng/ml basic Fibroblast Growth Factor (bFGF) (Invitrogen).   

 

Osteocyte Differentiation 

Cells were plated and grown until approximately 75% confluent, and then osteogenic 

differentiation media was added.  The differentiation media consisted of DMEM high glucose, 

1% FBS, 0.01µm 1.25-dihydroxyvitamin D3 (Sigma), 50µm ascobate-2-phosphate (Sigma), 

10mM β-glycerophosphate (Sigma), and 1% ABAM.  The cells were cultured for 2 weeks until 

significant calcium deposits were observed.   The cells were then washed and fixed using 4% 

paraformaldhyde solution and stained using Alizaran red S (Sigma), which specifically stains 

calcified deposits in the extracellular matrix. Whole field light microscopy images were captured 

at 10x magnification. 

 

Adipocyte Differentiation 

Cells were plated and grown until 100% confluent.  Adipogenic media containing 

DMEM low glucose, 1% FBS, 0.5mM isobutyl-methylxanthine (Sigma), 1µM dexamethasone 

(Sigma), 10µM insulin (Sigma), 200 µM indomethacin (Sigma,), and 1%  ABAM was then 

added.  The plates were maintained for 2 weeks until lipid droplet formation was observed.  The 
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cells were then washed and fixed using 4% paraformaldehyde and stained with Oil Red O 

(Sigma), which specifically stains lipid droplets. Whole field light microscopy images were 

captured at 10x magnification. 

 

Chondrocyte Differentiation 

Cells were collected and pelleted at 300xg in a 2ml V bottomed tube at 2 x 105 cells per 

pellet.  These tubes were placed in the incubator at 37°C in 5% CO2 in chondrogenic 

differentiation media containing DMEM low glucose, 1% FBS, 6.25 µg/ml insulin, 10ng/ml 

recombinant TGFβ3 (R&D systems Minneapolis, MN), 50nM ascorbate-2-phosphate, and 1% 

ABAM.  After 1 week, the pellets were transferred to a 10cm2 dish and cultured in the same 

media formulation for another 2wks.  The pellets were then removed, and the remaining cells on 

the plate were fixed in 4% paraformaldehyde and stained with Safranin O (Sigma), which 

specifically detects GAG proteins present in high concentrations in chondrocyte extracellular 

matrix.  The micromass pellets were imaged with a 1-mm scale bar to indicate gross anatomy and 

size. 

 

Terminal Restriction Fragment Analysis (TRF) 

Genomic DNA from 2 x 107 cells was isolated using the Qiagen genomic extraction kit, 

following the provided protocol (Qiagen, Valencia, CA). Then, strictly following radioactive 

handling safety, the telomere specific oligonucleotide G-rich probe (5’- 

TTAGGGTTAGGGTTAGGG-3’) HindIII and 1kb ladder (Invitrogen) were labeled using γ32P-

ATP via T4-polynucleotide kinase (Invitrogen) at 37°C for 15 minutes. The isolated genomic 

DNA was then digested using a cocktail of AluI, HinfI, and RsaI for overnight at 37°C and 
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electrophoresed on a 0.7% agarose gel at 80V overnight with the radio labeled 1kb and HindIII  

ladders.  The gel was then denatured for 30 minutes in 0.5M NaOH and 1.5M NaCl, dried for 2 

hours at 80°C, and neutralized for 15 minutes in 0.5M Tris and 1.5M NaCl.  The gel was then 

placed in a hybridization chamber, prehydridized in un-labeled G-rich probe solution for 30 

minutes, and hybridized to the radio-labeled telomere specific probe overnight at 42°C.  The next 

day the gel was exposed to a phosphoimager cassette and imaged using a phosphoimager and 

analyzed using ImageQuant software (Molecular Dynamics, Sunnvale, CA). 

 

Flow Cytometry 

Cells were first trypsinized and counted, and for each sample to be assayed, 5 x 105 cells 

were used for the primary antibody, while 2 x 105 were used for both secondary only and no 

antibody controls.  These cells were centrifuged at 1000xg for 1 minute at 4°C and resuspended 

in 75µl of FACS buffer (PBS, 2% FBS) and incubated on ice for 10 minutes.  The primary 

antibody was then added at 13µg/µL (CD14, CD29, CD34, CD45, CD73, or CD105) (Millipore, 

Billerica, MA) and incubated with rotation at 4°C for 30 minutes followed by centrifugation and 

3 washes with FACS buffer.  The secondary antibody (Alexa 488 anti-mouse) was then added at 

a dilution of 1:400 and incubated in the dark at 4°C with rotation for 30 minutes.  These washes 

were then repeated, and the resulting pellet was resuspended in 500µl 1x PBS and then filtered 

through a 35µm nylon mesh to remove any cell clumps.  These cell suspensions were kept on ice 

until cytometric analysis, which was performed using a Coulter Epics XL-MCL 

(BeckmanCoulter, Brea, CA). 

 

Telomeric Repeat Amplification Protocol (TRAP) 
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For the detection of telomerase activity, the TRAPeze kit (Millipore) protocol was 

followed.  Briefly, cells were trypsinized and counted, and 100,000 cells were removed, pelleted 

and lysed in 200µl of CHAPS lysis buffer supplied by the manufacturer (Millipore) for 30 

minutes on ice with protease inhibitors.  The sample at a concentration of 500 cells/µl was then 

centrifuged at 12,000xg to remove cell debris, and the subsequent lysate was collected and 

frozen at -80°C until analyzed.  Radioactive handling procedures being strictly followed, γ32P-

ATP was used to label the TS-primer using T4-polynucleotide kinase (Invitrogen) at 37°C for 30 

minutes.  The telomerase extension reaction was then carried out using the labeled TS-primer 

mixed with 1000 cells (2µl) per sample at room temperature for 25 minutes, followed by PCR 

amplification of elongated samples. PCR products were visualized by electrophoresis on a 10% 

polyacrylamide gel at 300V for 2 hours, followed by a brief fixation and exposure to a 

phosphoimager screen overnight.  The subsequent radiographic image was captured and 

quantified using a Molecular Dynamics phosphoimager and ImageQuant software (Molecular 

Dynamics, Sunnyvale CA). 

 

RT-PCR 

Cells were grown in 10cm2 dishes, trypsinized, and total RNA was extracted using 

TRIzol (Invitrogen) reagent following the manufacturer’s protocol.  After resuspension in TRIzol 

for 5 minutes, 200µl of chloroform was added, vortexed, and then the phases were separated by 

centrifugation at 12000xg for 15 minutes at 4°C.  The aqueous phase was then carefully removed 

and transferred into a new 1.5ml tube. The RNA was precipitated, the supernatant was removed, 

and the pellet was then washed with 75% ethanol, mixed and centrifuged at 7500xg for 5 

minutes at 4°C.  The ethanol was removed, and the pellet was air dried for 5 minutes and 
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resuspended in 30µl of dH2O.  The RNA purity and concentration was then analyzed using a 

Nanodrop 1000 UV/Spectophotometer (Thermo Scientific, Waltham, MA). The sample was then 

treated with DNAse to remove any DNA contamination that may have come from the TRIzol 

extraction. RT-PCR was then carried out using the RETROscript kit protocol (Ambion, Austin, 

TX).  Briefly, 2µg of total RNA was subjected to a reverse transcription reaction using random 

decamers as primers and MMLV-Reverse transcriptase.  This mixture was incubated at 44°C for 

1 hour, deactivated at 92°C for 10 minutes, and the resulting cDNA was either stored at -20°C or 

used immediately for PCR or qPCR analysis.  The PCR conditions were 94°C for 2 minutes, 30 

cycles of 94°C for 30 seconds, 55°C for 30 seconds, 72°C for 1 minute, and then 72°C for 5 

minutes.  Primers used were as follows: Oct-4 Fwd 5’-CAGTGCCCGAAACCCACAC-3’, Rev 

5’-GGAGACCCAGCAGCCTCAAA-3’; SOX2 Fwd 5’-TACCTCTTCCTCCCACTCCA-3’, 

Rev 5’-GGTAGTGCTGGGACATGTGA-3’; NANOG Fwd 5’ 

TTTGGAAGCTGCTGGGGAAG 3’, Rev 5’ GATGGGAGGAGGGGAGAGGA 3’;  Lin28 

Fwd 5’-AAGCGCAGATCAAAAGGAGA-3’, Rev 5’-CTGATGCTCTGGCAGAAGTG-3’; C-

MYC Fwd 5’-GCGTCCTGGGAAGGGAGATCCGGAGC-3’, Rev 5’-

TTGAGGGGCATCGTCGCGGGAGGCTG-3’; hTERT Fwd 5’-

CGGAAGAGTGTCTGGAGCAA-3’, Rev 5’-GGATGAAGCGGAGTCTGGA-3’.  The 

resulting PCR products were then visualized after electrophoresis on a 1.5% agarose gel and 

staining with EtBr. 

 

qPCR 

Total RNA was isolated and reverse transcribed as described above. The resulting cDNA was 

then used to create a standard curve for optimized cDNA amplification and primer disassociation 
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or each primer set using the SYBR-greener qPCR Supermix kit (Invitrogen). Primers used for 

the genes of interest were as described above. Relative quantitative polymerase chain reaction 

(qPCR) was then carried out using an Applied Bioscience 7900HT instrument.  The resulting 

data was analyzed using the 2-ΔΔCt method with ABI SDS 2.2.2 software (Applied Bioscience) 

where ribosomal 18S (Ambion, Austin, TX) gene expression was used as the endogenous gene 

control, and baseline gene expression was set based on the signal present from reverse 

transcribed RNA from BJ fibroblasts or ASC. 

 

Karyotypic Analysis 

The chromosomes from cell strains ASC 8, 9, and 12s were analyzed using GTG-

banding. Each cell line was harvested and slides were prepared according to standard procedures 

(Rooney, 1992). Briefly, actively dividing cells were blocked in metaphase with 0.1 g/mL of 

Colcemid for 2-4 hours. After a 10 minute incubation in a 0.075 M KCl hypotonic solution, the 

cells were fixed by serial washes in a methanol–glacial acetic acid solution (3:1). GTG-banding 

was performed using standard procedures (Barch, 1997). Representative images were captured 

using a Cytovision image analysis system (Applied Imaging, Santa Clara, CA) 

 

Results 

ASCs can be isolated from many sources, have normal growth and are karyotypically 

stable. For the initial isolation of ASCs, we followed the guidelines set forth in a previous report. 

(Zuk, et al., 2001) Our isolations were similar to these studies showing an abundance of adherent 

cells from each isolation and a 100-fold increase in viable cells compared to those isolated from 

a bone marrow aspiration. (Izadpanah et al., 2006; Zhu et al., 2008)  Upon further expansion, we 
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noticed a moderately elevated doubling time (~50 hours) with an appropriate proliferative 

lifespan for our ASC cell strains (Figure 10) similar to other reports.( Izadpanah et al., 2006; Zuk 

et al., 2001; Astori et al., 2007; Katz et al., 2005; Kern et al., 2006; Leong et al., 2005; Lin et al., 

2008; Noël et al., 2008; Rebelatto et al., 2008; Wagner et al., 2005; Yoshimura et al., 2006; Lin 

et al., 2008; Zhu et al., 2008). We also examined karyotypic stability with continued passage, 

using metaphase G-banding techniques.  In contrast to previous reports (Rubio et al., 2005), our 

ASCs were karyotypically stable at both early and late population doubling times (Figure 11, 

Table 1), none of which spontaneously immortilized.  Because prior studies suggested that ASCs 

reside in a niche located in the perivasculature of capillaries and arterioles, (Lin et al., 2008) we 

hypothesized that the blood/saline fraction of lipoaspiration procedures might contain a subset of 

ASCs, released due in part to the disruptive nature of the lipoaspiration procedure.  To test this 

hypothesis, we modified the existing extensive 8-10 hour protocol into a simple 30 minute 

procedure, as previously reported (Francis e. al., 2009).  Briefly, the saline fraction was removed 

from the lipoaspirate, pelleted, treated with a blood cell lysis buffer, filtered, and plated with 

high FBS.  After adherent cells were allowed to attach overnight, the plates were washed, and the 

adherent cells were subsequently maintained and cultured. We successfully isolated two strains 

using this rapid, saline isolation from two separate patients designated ASC4s and ASC12s and 

tested these cells for their multipotential capacity.  Both rapid isolation cell strains show the 

ability to differentiate into mesenchymal lineages, including osteocytes, adipocytes, and 

chondrocytes (Figures 20-22), similar to our ASC cultures obtained via the standard isolation 

procedure.  We hypothesized that if these cells reside in the capillary beds interspersed 

throughout fatty deposits, then it should be possible to obtain ASCs from many other localities in 

the body.  To test this theory, we next  
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Figure 10: Growth chart of representative populations of ASCs. Cells (~2 Population 
doubling)were counted and seeded at a density of ~2.5X105 cells/100mm dish.  Cells were then 
cultured until near confluency and then passed at a ratio of 1:4 or 1:8.  All relevant passage 
dates/ratios were recorded and population doubling time was assessed. The number of population 
doublins were plotted vs. time in culture.  ASC4, 4s, and 1 were cultured continuously in EGF 
free media, while ASC 8, 9 and 12s were supplemented with 10ng/ml EGF. 
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Figure 11: ASC karyotype analysis. Representative G-band karyotype analysis of ASC 8 PD 2 
(A), ASC 9 PD 20 (B) and ASC 12s PD 4 (C).  ASC 9 cell strain was found to have a 
chromosomal inversion of inv(9)(p11q13), which is representative of 1-2% of African 
Americans, and 0.1% of caucasians and is considered a normal “variant” that is not clinically 
significant. Note that all patients were female as evident from XX complement. PD = population 
doublings 
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Table 1: Summary of ASC karotypic analysis. 

Cell Strain Population 
Doubling 

Modal 
Number Karyotype Number 

Cells Scored 

ASC 8 2 46 46, XX 8 

 21 46 46, XX 4 

ASC 9 13 46 46, XX 
inv(9)(p11q13) 18 

 20 46 46, XX 
inv(9)(p11q13) 8 

ASC 12s 4 46 46, XX 6 
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isolated cells obtained from fat tissue throughout the abdomen (ASC8) , legs and arms (ASC9), 

and three successful isolations from breast reduction mammoplasties (bASC1-3). (Dr. ? Zhao 

and Dr. Lynn Elmore personal communication).  All of these cells showed a similar 

differentiation potential for adipocytic (Figure 20), osteocytic (Figure 21), and chondrocytic 

(Figure 22) lineages.  

 

ASCs lack telomerase, and show telomere erosion with serial passaging. Due to the 

finite lifespan of our ASCs (Figure 10) undergoing the typical “fried-egg” morphology following 

continued passage, we wanted to determine the potential mechanism for the induction of this 

senescence.  A few studies show telomerase activity in ASCs (Rubio et al,. 2005; Lin et al., 

2008; Peng et al., 2008), while the majority report undetectable telomerase expression (Kang et 

al., 2004; Kassem et al.,. 2004). In order to determine if our ASCs express telomerase, we tested 

for activity under a variety of culture conditions: day 0 cultures, low population doubling (PD 2), 

actively dividing ASCs, and ASCs in ESC media.  In none of these conditions did ASCs exhibit 

or upregulate telomerase activity (Figure 12).  There are also reports of elevated telomerase 

expression in BM-MSCs upon culturing after serum deprivation (Zhao et al., 2008). However, 

repeated attempts to stimulate cells after serum starvation failed to show any telomerase activity 

(Figure 12).  To determine if our ASCs erode telomeres over time in the absence of telomerase 

we performed a TRF analysis to examine the global telomeric lengths with continued culturing 

(Figure 13).  As expected, we find that with higher population doublings, ASC’s overall telomere 

lengths decrease with continued culture, correlating the progressive loss of proliferative capacity 

to the slow erosion of the telomeres (Figure 13).  
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Figure 12: ASCs lack telomerase activity in all isolated samples. As assessed by TRAP 
activity.  ASC 1 was taken at a PD 0 (lane 1) and PD 21 (lane 2).  ASC 1 and 4 during a serum 
deprived (SD) period ranging from day 3 (lane 3) to 2 weeks (lane 4),  2.5 weeks (lane 5, 14) to 3 
weeks (lane 6, 15).  Negative control was lysis buffer alone (lane 7, 19), and the positive control 
was lysis of MCF7 cells (lane 8, 19) or Adenoviral infected hTERT ASC 8 (lane 9).   ASC 9, 4, 
5, and 6 also show no activity (lane 11, 13, 16, 17).  ASCs grown in knock out replacement 
serum (KoSr) embryonic media formulation (lane 12). IC = 36bp Internal control 
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Figure 13: ASCs experience telomere attrition with continued passage. The TRF is a 
specialized southern blot assay to examine specific telomere lengths.  Mean telomere length is 
calculated by creating densitometric curve of lane, mean is .5x total area under curve. BJ 
fibroblast were used as a control, PD 21 to PD 81 show telomeric loss, BJ hTERT at PD 101 
shows a typical telomerized cells telomere length with a tight band of long telomeres.  ASC 8, 9, 
and 12s show erosion with continued passage. 
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 Immunophenotyping.  To clarify the combination of markers most appropriate for 

distinguishing our ASCs as stem cells, we tested a panel of antibodies most commonly reported  

in recent literature (Izadpanah et al., 2006; Zuk et al., 2001; Astori et al., 2007; Katz et al., 2005; 

Kern et al., 2006; Leong et al., 2005; Lin et al., 2008; Noël et al., 2008; Rebelatto et al., 2008; 

Wagner et al., 2005; Yoshimura et al., 2006; Lin et al., 2008; Zhu et al., 2008).  While there are 

many conflicting reports some commonly used markers do exist (Table 2). We focused on a 

consensus set of markers derived from current literature and that were promoted by commercial 

biotechnology companies to be stem cell markers. The positive markers included: CD29, (stains 

a diverse number of cells including endothelial cells, monocytes and platelets), CD73 (found on 

epithelium, endothelial and some mature lymphocytes), CD105 (a marker of endothelium and 

perhaps some stem/progenitors), and the more controversial marker, CD34, which is primarily 

seen on hematopoetic stem cells.  For negative cell surface markers, we also used a panel of 

antibodies generally accepted as negative for a cell of mesenchymal lineage including: CD45  (a 

general marker of leukocyte presence), CD31 (a marker of endothelial cells), and CD14 to 

distinguish the cells from macrophages/monocytes.  

We first tested the iPS line derived from BJ fibroblasts to determine if these cells were 

similar to our stem cells and found a complete lack of expression for all markers tested (Figure 

14). We also analyzed our ASC strains, which consistently stained positive for CD29, CD73, 

CD105 and negative for CD45, CD31, and CD14 (Figures 15-17 A-F).  However, we found a 

small population of cells in the ASC cultures that express CD34 (Figure 15-17 G), whereas the 

CD34 marker was absent from BJ fibroblast cells (Figure 18 G).  The expression of CD34 was 

low enough (< 8%) that ASCs could easily be called negative, but were classified as CD34low. 

Other then the low expression of CD34, BJ fibroblasts showed an almost indistinguishable  
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Table 2: Summary of cell surface markers from literature. 
Cell 
Isolation CD14 CD29 CD31 CD34 CD45 CD73 CD90 CD105 

Adipose 
Stromal 
Cell 

- + - -/+ - + + + 

Adipose 
Stromal 
Cell P0 

n/a + - + - n/a + - 

Bone 
Marrow 
Stem Cell 

- + - - - + + + 

Stromal 
Vascular 
Fraction 

n/a n/a - + - + + + 

Umbilical 
Cord 
Blood 

- + - - - + + + 

Dermal 
Fibroblast - + - - - + + + 

BJ 
Fibroblast - + - - - + + + 
Vascular 
Smooth 
Muscle 
Cell 

n/a n/a - + - n/a + - 

ASC 
Consensus 
Profile* 

- + - +/- - + + + 
*average of all qualitative acknowledgement of presence or absence 
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Figure 14: iPS cell surface immunophenotype.  Flow cytometery was performed on iPS cells, 
which were negative for CD14, CD31, CD45, CD29, CD73, CD105. Highlighted grey overlay 
represents negative antibody control, which is cytometric analysis on a no-antibody portion of 
cells. Note CD34 shown to highlight individual populations, any positive fluorescent cells are 
seen as a shift to the right of the gate line, showing a lack of CD34+ cells.  
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Figure 15: ASC 8 cell surface immunophenotype.  Flow cytometery was performed on ASC 8, 
which were negative for CD14, CD31, CD45 and positive for CD29, CD73, CD105. Highlighted 
grey overlay represents negative antibody control, which is cytometric analysis on a no-antibody 
portion of cells. Note CD34 shown to highlight individual populations, any positive fluorescent 
cells are seen as a shift to the right of the gate line, suggesting a population of CD34+ cells. 
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Figure 16: ASC 9 cell surface immunophenotype.  Flow cytometery was performed on ASC 9, 
which were negative for CD14, CD31, CD45 and positive for CD29, CD73, CD105. Highlighted 
grey overlay represents negative antibody control, which is cytometric analysis on a no-antibody 
portion of cells. Note CD34 shown to highlight individual populations, any positive fluorescent 
cells are seen as a shift to the right of the gate line, suggesting a population of CD34+ cells. 
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Figure 17: ASC12s cell surface immunophenotype. Flow cytometery was performed on ASC 
12s, which were negative for CD14, 31, 45 and positive for CD29, 73, 105. Highlighted grey 
over lay represents negative antibody control, which is cytometric analysis on a no-antibody 
portion of cells. Note CD34 shown to highlight individual populations, any positive fluorescent 
cells are seen as a shift to the right of the gate line, suggesting a CD34+ population. 
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Figure 18:BJ fibroblast cell surface immunophenotype. Flow cytometery was performed on 
BJ fibroblasts, which were negative for CD14, CD31, CD45, CD34, Positive for CD29, CD73, 
CD105. Highlighted grey area represents negative antibody control, which is cytometric analysis 
on a no-antibody portion of cells. Note CD34 shown to highlight individual populations, any 
positive fluorescent cells are seen as a shift to the right of the gate line. 
HL60 
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similarity to the ASC strains, suggesting that the immunophenotype of ASCs does not classify 

them as stem cells. Further, to test for positive staining with the antibodies for CD45, CD31, and 

CD14 we used HL60 cells subject to differentiation with Vitamin D exposure.  This indicated 

that our negative markers were functioning properly, just undetectable in our ASCs (Figure 19). 

 

ASCs have high multipotency.  To determine the differentiation capacity of all of our 

isolated ASC strains, we examined their multipotential capabilities by differentiating cells down 

various mesenchymal lineages reported in the literature with the highest frequency. (Izadpanah et 

al., 2006; Zuk et al., 2001; Astori et al., 2007; Katz et al., 2005; Kern et al., 2006; Leong et al., 

2005; Lin et al., 2008; Noël et al., 2008; Rebelatto et al., 2008; Wagner et al., 2005; Yoshimura 

et al., 2006; Lin et al., 2008; Zhu et al., 2008). First, we tested their ability to differentiate into 

their source tissue, adipose.  For this differentiation procedure we used an adipogenic cocktail 

media on all of our strains once they achieved ~100% confluence with BJ fibroblast as our 

negative mesenchymal control, and BM-MSCs as our positive control.  Whether isolated from 

the saline fraction, abdomen, arms, legs, breasts, or bone marrow, all ASCs successfully 

differentiated into adipocytes (Figure 20A-G).  There was no differentiation seen in our BJ 

fibroblasts controls (Figure 20G, J), nor from ASCs and BMMSCs maintained for the same 

length of time at confluence with regular growth media (Figure 20F-J).  The successful 

differentiation into adipocytes was initially characterized morphologically by the formation of 

round lipid droplets within the cell, then confirmed by their staining with the lipid and neutral 

triglyceride-specific stain Oil red O (Figure 20A-G).   

 
 
 
 



www.manaraa.com

 

 61 

 
 
 
 
 
 
 

 
Figure 19: HL-60 cell surface immunophenotype. Flow cytometery was performed on HL-60 
cells as a positive control for CD14, CD31, and CD45.  Cells were treated with Vitamin D to 
induce differentiation, upon differentiation cells became positive for CD14 and CD31, while 
retaining CD45 expression. Highlighted grey overlay represents negative antibody control, which 
is cytometric analysis on a no-antibody portion of cells. 
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Figure 20: ASCs differentiate into adipocytes, compared to controls. All cells were plated 
and grown to 100% confluency, following which cells were maintained in either adipogenic 
media (A-E) or standard growth media (F-J) for 14 days. Following visualization of lipid droplet 
formation in a significant proportion of cells (~70%) after ~ 2 weeks, all cells were fixed and 
stained with Oil Red O to specifically highlight lipid formation representative of adipocytes.  
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We next analyzed the cells’ ability to differentiate into osteocytes.  The same panel of 

cells was grown to ~70% confluence and then subject to a cocktail media containing elements to 

specifically cause osteogenic differentiation.  We saw similar results, as morphologically the  

cells began to group together and form “bone nodules”, a characteristic of osteogenesis in vitro.  

These nodules are the primary source of calcification in the surrounding extracellular matrix, 

visualized via staining with Alizaran Red S (Figure 21A-E). All of our ASC strains and the BM-

MSC were positively histochemically stained, while BJ fibroblasts failed to differentiate along 

an osteogenic lineage in induction media or in normal media (Figure 21E, J).  

To unequivocally confirm these cells as multipotent, we tested their capacity to differentiate 

down a third, chondrogenic, pathway.   The cells were collected in a V-bottom 2-ml tube into a 

micromass pellet, which was maintained in a chondrogenic differentiation cocktail for 30 days.  

Again, all ASC cell types and the BM-MSC successfully differentiated into solid, white, 

chondrogenic micromass pellets (Figure 22K), and this morphology was further analyzed by 

staining with the GAG protein-specific Safranin O stain (Figure 22A-E), which was absent in BJ 

fibroblasts. In our hands, normal BJ fibroblasts failed to differentiate down any of the three 

mesenchymal lineages tested, despite some reports to the contrary (Kern et al., 2006) (Figure 

22E, J). The BM-MSCs showed varying degrees of differentiation down the mesenchymal 

lineages tested, although they did always differentiate. 

 

ASCs express Oct-4, SOX2, and NANOG. The same studies that indicated elevated telomerase 

expression in ASCs after serum deprivation also reported the expression of a marker for 

pluripotency, Oct-4 (Pochampally et al., 2004).  Since our ASC strains have no distinct 

immunophenotype and lack telomerase expression, our goal was to determine if these cells  
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Figure 21: ASCs differentiate into osteoblasts, as compared to controls.  Continuous culture 
was done in either osteogenic induction media (A-E) or regular growth media (F-J) for 14 days.  
Once cells begin to form bone nodules, and produce significant amounts of calcium deposits (~ 2 
weeks),  all cells were fixed and stained with Alizarin red S to specifically highlight calcium 
production, which is representative of osteoblasts.  
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Figure 22: ASCs differentiate into chondrocytes, as compared to controls. Following 
micromass pellet formation, cells were continuously cultured in either induction chondrogenic 
media (A-G) or normal growth media (F-J) for 30 days.   The whole pellet is then imaged (K), 
processed and stained with Safarin O to specifically highlight GAG protein production 
representative of chondrogenic cells.  
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Figure 23 qRT-PCR of Oct-4, SOX2 and NANOG in ASCs show a significant increase in 
expression over BJ fibroblasts. Relative expression levels for SOX2 (a), Oct-4 (b) and 
NANOG were assessed using ΔΔCt method in ASC 8, 9, 12s, BM-MSC and iPS. Data shown 
relative to endogenous control RNA 18s, with fold increase over expression levels in BJ 
fibroblasts. All lanes shown at p <0.05 as compared to BJ Fibroblasts. 
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express any markers of pluripotency, making them more similar to stem cells than fibroblasts. 

We performed qRT-PCR, to determine the quantitative levels of Oct-4, SOX2 and NANOG 

mRNA transcripts (Figure 23 A-C). Our baseline expression was set relative to expression found 

in BJ fibroblasts, which express extremely low levels of the respective genes.  iPS cells created 

from the same BJ fibroblasts served as our positive control.  We found that our ASC cell strains 

express all three markers of pluripotency at higher levels than BM-MSCs (Figure 23).  SOX2 is 

expressed at an average of 100-fold higher levels than BJs, while expressing 10-fold less then 

their pluripotent iPS counterparts (Figure 23A).  Oct-4 Levels were ~10-100 fold below iPS 

cells, while significantly higher then BJ fibroblasts (Figure 23B).  NANOG approached 100-fold 

higher levels in ASCs then BJ fibroblasts while being ~20-fold below iPS cells (Figure 23C).  

 
Discussion 

With the onset of many diseases, either from injury or from the inevitable aging of our 

organs over time, there is a need to replenish and repair these damaged tissues.  Many problems 

currently with advancing medicine hinge upon a lack of useable replacement tissues.  We show 

here adipose-derived adult stem cell populations with the capacity to differentiate in a similar 

fashion to mesenchymal stem cells from bone marrow.  Obtaining ASCs, however, does not 

require a painful aspiration from the iliac crest and circumvents the low yield associated with the 

isolation of BMMSCs, lending to a much more accessible source of stem cells to develop 

regenerative techniques. In addition, we identified a fraction of ASCs that can be readily isolated 

from the saline fraction of lipoaspirate without the previous lengthy isolation procedure, making 

them even more easily attainable for stem cell-related studies (Francis et al., 2009). We also 

show that ASCs are found in fat depots throughout the body and could be located in capillary 

beds in association with adipose tissue. Our hypothesis that sonication used during liposuction 
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would cause a greater disruption of tissues releasing more ASCs from the capillary and arteriole 

beds in the adipose tissue, proved to be the case. This allowed for the establishment of a much 

more streamlined isolation procedure for ASCs without compromising any of their stem cell-like 

features. While contrary to studies that suggest sonication as a source of cellular damage and loss 

of proliferative capacity (Zuk et al., 2001), we demonstrate that the ASCs remain viable and 

differentiate down a variety of mesenchymal lineages.   

 We also sought to define a subset of cell surface markers as a means to identify ASCs as 

true stem cells and to clarify the inconsistency in the literature and from commercial sources.  

We find no definitive immunophenotype for our ASCs that would distinguish them from either 

normal fibroblasts or BM-MSCs.  Consistent with these observations, we find that our ASCs lack 

telomerase expression and gradually shorten their telomeres with advancing age, indicating a 

telomere-based senescence mechanism.  Together, these data suggest that ASCs, in many ways, 

behave like normal diploid fibroblasts. 

While lacking the ability to proliferate indefinitely, ASCs and to a lesser extent BM-

MSCs, express markers of embryonic stem cell pluripotency, Oct-4, SOX2 and NANOG, at 

significantly higher levels than fibroblasts. In stark contrast to BJ fibroblasts’ inability to 

differentiate, our ASCs have multipotent capacity and differentiate into multiple cell types, 

consistent with a stem cell phenotype.  Our data suggests that ASCs exist in the body as a more 

primitive cell type, with elevated pluripotent gene levels and increased ability to differentiate 

then other mesenchymal cell types.  However, the lack of telomerase in our ASCs suggests that if 

these cells do play a critical role in the continued replacement of lost or damaged tissues, the 

body’s ability to signal and use these cells would be reduced as they undergo age-related 

senescence.   
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We suggest here that perhaps future therapies could isolate ASCs in a non-intrusive 

manner, expand with telomerase activity if necessary, and re-implant cells in damaged areas as 

needed. Such therapies could lead to cures for many diseases such as osteoporosis, arthritis, and 

possibly diseases of the brain and nervous system such as spinal cord injuries and Parkinson’s 

disease (Picinich et al., 2007). Importantly, these procedures would all be autologous, avoiding 

any graft vs. host disease and circumventing much of the controversy surrounding embryonic 

stem cells.   

 In conclusion, the common cell surface markers and telomerase measurements used to 

identify ASCs succeed in only identifying them as similar to fibroblasts.  Our results indicate 

that’s ASC stemness should be defined by their ability to differentiate into multiple lineages 

coupled with their expression of Oct-4, SOX2 and NANOG in order to distinguish ASCs as more 

stem cell-like.    
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Chapter 3 

hTERT Regulation During the Induction of Pluripotent Stem Cells 

 

Abstract 

iPS cells express high levels of hTERT, the catalytic component of the ribonucleoprotein 

telomerase. Expression of telomerase is activated during the induction process, which is 

accomplished by the exogenous expression of the genes Oct-4, SOX2, NANOG, and Lin28 from 

normal, non-hTERT expressing fibroblasts.  To elucidate the mechanisms behind this activation, 

we examined the effect of expression of these four genes in BJ fibroblasts and ASCs. By 

expressing each gene individually and in various combinations using a transient adenoviral 

expression system, we show that these genes are incapable of activating hTERT alone, even 

though these stem cell factors were upregulated to levels observed in iPS cells.  We hypothesized 

that the negative regulation of hTERT in the BJ and ASC strains is associated with an inactive 

chromatin state at the promoter   This hypothesis was supported by our observation of a lack of 

acetylated and the presence of di-methylated histone H3 in ASCs and BJs. This finding is in 

contrast to the observations noted in the hTERT-expressing iPS cells.  Subsequent treatment of 

cells with Trichostatin A (TSA) alone showed an upregulation of hTERT mRNA without the 

commensurate telomerase activity.  However, telomerase activity was found when ASCs, but not 

BJs, were treated with both TSA and all four induction factors, indicating differential regulation 

of hTERT in cells of similar mesenchymal origins. As expected, over-expression of C-MYC in 

these cells is also capable of activating telomerase. These data suggest that while the expression 

of hTERT is universally dependent on the presence of a relaxed chromatin state and sufficient 

transactivating factors, other cell to cell differences can ultimately prevent its expression.  
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Introduction  

Immortalization, defined as the process by which the number of divisions a cell can 

complete are not limited, is almost always coupled to the expression of the telomerase enzyme.  

For pluripotent cells, such as ESC and the morphologically indistinguishable iPS cells (Figure 

24), expression of the catalytic component of telomerase, hTERT, is found in high abundance. 

Telomerase expression allows these cells to avoid telomere-based senescence and facilitates the 

cell’s ability to differentiate following continuous passage.  ESCs express hTERT as an inherent 

feature of its pluipotent state, present from the point of derivation from the inner cell mass of a 

blastocyst stage embryo, while hTERT expression in iPS cells is a function of the induction 

process from normal cells that lack hTERT.  Four ESC-associated factors are typically used to 

shift a cell from a normal somatic cell to a pluipotent cell: Oct-4, SOX2, NANOG, and Lin28 

and alternatively Oct-4, SOX2, C-MYC, and KLF4 (Yu et al., 2007; Takahashi & Yamanka, 

2006s).  While the expression of hTERT following the induction process has been well 

documented, the mechanisms underlying this activation have not (Yu et al., 2007; Takahashi & 

Yamanka, 2006).  Of the factors used, only one, C-MYC, has been shown to have a direct effect 

on hTERT activation (Kyo et al., 2000), although it appears to be at least partially cell type-

specific (Zou et al., 2005).  This ability has been attributed to C-MYC’s direct binding to either 

of the E-box regions in the hTERT promoter at -34 and -242 upstream of the ATG start site. 

While C-MYC is the only factor of the ESC-associated genes previously shown to activate 

hTERT, both sets of genes used for iPS formation exhibit hTERT upregulation (Yu et al., 2007, 

Takahashi et al., 2007), even though only one set uses C-MYC.   

To further understand the mechanisms underlying hTERT upregulation during iPS 

formation, we overexpressed each factor individually and in various combinations using an  
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Figure 24: ESC and iPS colony morphology. Two representative images showing 
morphological similarities between an ESC colony (A) and an iPS colony (B), including high 
nucleus to cytoplasm ratio. Cells are shown on MEF feeder layer at 10x magnification. 
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transient adenoviral expression system in normal fibroblasts and ASCs.  We have shown 

previously that ASCs have basal levels of the iPS induction genes, lending to a more susceptible 

gene environment, and our BJ fibroblasts were the cell type used to create the iPS cells. We 

show that all of the iPS factors are incapable of activating hTERT without the assistance of either 

the histone deacetylase inhibitor Trichostatin A (TSA) or the expression of C-MYC, suggesting 

the potential for alternative activation mechanisms.  We also find that ASCs and BJ fibroblasts 

have a condensed hTERT promoter as indicated by the lack of acetylated H3K9 but a methylated 

H3K9, which is a pattern that is opposite of the hTERT-expressing iPS cells.  Together, these 

data suggest that during the process of iPS generation, it is necessary to overcome key regulatory 

checkpoints for hTERT activation such as the epigenetic state. Furthermore, expression of iPS 

factors, Oct-4, SOX2, NANOG, and Lin28, appear to not have direct hTERT activation ability. 

 

Materials and Methods 

Cell Culture 

Adipose stem cells were maintained in DMEM low glucose supplemented with 10% 

FBS, 1% antibiotic/antimycotic (ABAM), and 10ng/ml at 5% CO2 at 37°C. IMR90, a fetal lung 

fibroblast (CCL-186, ATCC Manassas, VA) and BJ fibroblasts cells (CRL-2522, ATCC) post 

natal foreskin fibroblasts, were cultured in DMEM high glucose supplemented with 10% cosmic 

calf serum (Thermo Scientific, Waltham, MA), 3% Media 199 (Invitrogen, Carlsbad, CA), and 

1% ABAM (Invitrogen). 

Induced pluripotent stem cells and embryonic stem cells were maintained on an 

mytomycin C (Sigma) inactivated mouse embryonic fibroblasts monolayer, in knock out 
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replacement media containing DMEM/F12, 20% KoSR (Invitrogen), 1% Penicillin/streptomycin 

(Invitrogen), 1% non-essential amino acids (Invitrogen), 0.1mM β-Mercaptoethanol (Sigma), 

and 4ng/ml basic Fibroblast Growth Factor (bFGF) (Invitrogen). 

 

Adenovirus Construction and Amplification.  

The adenovirus vector was provided by the Massy Cancer Center shared resource viral 

core facility at Virginia Commonwealth University. Expression vectors for pGEM-Oct4, pGEM-

Sox2, pGEM-NANOG, and pGEM-Lin28 were obtained from Addgene (Cambridge, MA). All 

four of the pGEM vectors were transformed into DH5α cells (Invitrogen), clones were selected, 

and vector DNA was extracted through column-based plasmid prep systems (Qiagen, Valencia, 

CA).  The resulting vectors were digested with NotI (New England Biolabs, Ipswich, MA) to 

remove the inserted gene, separated on a 1% agarose gel, purified, and then ligated into the 

multiple cloning site of the NotI linearized shuttle vector pZeroTg-CMV. To create the final 

adenoviral construct, the shuttle vector was co-transformed into bacterial cells with Cla I-

lineraized Adenoviral vector Ad5dl324. The viral vectors were then transfected into 70% 

confluent HEK-293B cells (ATCC). After 24hrs of infection, cells were collected and lysed.  The 

lysate was then subject to centrifugation to clear the sample of any cellular debris, then 

concentrated via ultracentrifugation, and the resulting crude extract pellet was then resuspended 

in minimal DMEM/F12 media.  The crude extract was then analyzed using a plaque forming 

assay to determine viral concentration. 

 

Lentivirus Production, Infection, and Selection 



www.manaraa.com

 

 75 

The lentiviral pSin iPS gene vectors were obtained from Addgene and transformed and 

selected as above (Adenoviral).  For virus production, pSin-Oct4, pSin-Sox2, pSin-Nanog, or 

pSin-Lin28 were individually transfected into 30-50% confluent 293T HEK cells, together with 

the remaining viral components including PsPax2 and pMD2.g at a ratio of 4:3:1 using Fugene 6 

reagent (Invitrogen).  Following a 24 hour incubation period at 37°C and 5% CO2, the media was 

changed and the cells incubated for another 24hrs.  After 24hrs and 48hrs, the media containing 

active virus was carefully removed and filtered using a 0.45µ syringe filter.  The resulting viral 

supernatant was then directly added to the cells and allowed to incubate overnight.  The 

following day, viral media was removed and replaced with normal growth media, followed by 

selection using appropriate antibiotics. IMR90, BJ and ASC 8 were selected for 3 days with 

puromycin (Invitrogen) at a concentration of 500ng/ml. Following selection, cells were 

maintained in media containing 1ng/ml puromycin for continued selection pressure.  

 

Telomeric Repeat Amplification Protocol 

For the detection of telomerase activity, the TRAPeze kit (Millipore) protocol was 

followed.  Briefly, cells were trypsinized and counted, and 100,000 cells were removed, pelleted 

and lysed in 200µl of CHAPS lysis buffer supplied by the manufacturer (Millipore) for 30 

minutes on ice with protease inhibitors.  The sample at a concentration of 500cells/µl was then 

centrifuged at 12,000xg to clear out cell debris, and the subsequent supernatant was collected and 

frozen at -80°C until used.  With radioactive handling procedures being strictly followed, γ32P-

ATP was used to label the TS-primer using T4-polynucleotide kinase (Invitrogen) at 37°C for 30 

minutes.  The telomerase extension reaction was then carried out using the labeled TS-primer 

mixed with 1000 cells (2µl) per sample at RT for 25 minutes, followed by PCR amplification of 
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elongated samples. PCR products were visualized by electrophoresis on a 10% polyacrylamide 

gel at 300V for 2 hours, followed by a brief fixation and exposure to a phosphorimager screen 

overnight.  The subsequent radiographic image was captured and quantified using a Molecular 

Dynamics phosphorimager and ImageQuant software (Molecular Dynamics, Sunnyvale CA).   

 

RT-PCR 

Cells were grown in 10cm2 dishes, trypsinized, and total RNA was extracted using 

TRIzol (Invitrogen) reagent following the manufacturer’s protocol. The RNA purity and 

concentration was then analyzed using a Nanodrop 1000 UV/Spectophotometer (Thermo 

Scientific). The sample was subsequently treated with DNase to remove any genomic DNA 

contamination that may have come from the TRIzol extraction. RT-PCR was then carried out 

using the RETROscript kit protocol (Ambion, Austin, TX).  Briefly, 2µg of total RNA was 

subjected to a reverse transcription reaction using random decamers as primers and MMLV-

Reverse transcriptase.  This mixture was incubated at 44°C for 1 hour, deactivated at 92°C for 10 

minutes, and the resulting cDNA was either stored at -20°C or used immediately for PCR or 

qPCR analysis.  The PCR conditions were 94°C for 2 minutes, 30 cycles of 94°C for 30 seconds, 

55°C for 30 seconds, 72°C for 1 minute, and then 72°C for 5 minutes.  Primers used were as 

follows: Oct-4 Fwd 5’-CAGTGCCCGAAACCCACAC-3’, Rev 5’-

GGAGACCCAGCAGCCTCAAA-3’; SOX2 Fwd 5’-TACCTCTTCCTCCCACTCCA-3’, Rev 

5’-GGTAGTGCTGGGACATGTGA-3’; NANOG Fwd 5’ TTTGGAAGCTGCTGGGGAAG 3’, 

Rev 5’ GATGGGAGGAGGGGAGAGGA 3’;  Lin28 Fwd 5’-

AAGCGCAGATCAAAAGGAGA-3’, Rev 5’-CTGATGCTCTGGCAGAAGTG-3’; C-MYC 

Fwd 5’-GCGTCCTGGGAAGGGAGATCCGGAGC-3’, Rev 5’-
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TTGAGGGGCATCGTCGCGGGAGGCTG-3’; hTERT Fwd 5’-

CGGAAGAGTGTCTGGAGCAA-3’, Rev 5’-GGATGAAGCGGAGTCTGGA-3’.  The 

resulting PCR products were then visualized after electrophoresis on a 1.5% agarose gel and 

staining with EtBr. 

 

qPCR 

Total RNA was isolated and reverse transcribed as described above. The resulting cDNA 

was then used to create both a standard curve for optimized cDNA amplification and primer 

dissociation for each primer set using the SYBR-greener qPCR Supermix kit (Invitrogen,). 

Primers used for the genes of interest were as described above. Relative quantitative polymerase 

chain reaction (qPCR) was then carried out using an Applied Bioscience 7900HT machine.  The 

resulting data was analyzed using the 2-ΔΔCt method where ribosomal 18S (Ambion) gene 

expression served as the endogenous gene control, and baseline gene expression was set based 

on the signal present from reverse transcribed RNA from BJ fibroblasts or ASC. 

 

Western Blot Analysis 

 ASCs and BJ fibroblasts were infected with genes of interest and select samples were 

treated with TSA. Cells were washed with PBS, trypsinized and collected from 10cm2 dishes,  

centrifuged at 300xg for 4 minutes, resuspended in PBS, and the centrifugation was performed 

again. The cells were resuspended in radio immunoprecipitation buffer (RIPA, 50mM Tris (pH 

7.4), 150mM NaCl, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 1% aprotinin, 

100mM DTT) and incubated on ice for 30 minutes with Protease inhibitor cocktail IV 

(Calbiochem, San Diego, CA).  The lysate was passed through a 22 gauge syringe 10 times and 
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centrifuged at 11,000xg at 4°C for 20 minutes, and the supernatant was transferred to a fresh 

tube. The protein contents was quantified using the Biorad (Hercules, CA) Protein reagents kit.  

40µg of total protein was resolved using SDS-PAGE and transferred to nitrocellulose.  The 

nitrocellulose blot was blocked with 5% non-fat milk (Biorad) followed by incubation with the 

primary antibody of interest [Anti-Oct-4 100ng/ml, Anti-SOX2 200ng/ml, Anti-NANOG 

200ng/ml, Anti-Lin28 100ng/ml, Anti-C-MYC 200 ng/ml (Millipore) and Anti-β-actin (Sigma)] 

for 1 hour with rocking at room temperature.  The blot was washed and secondary antibody was 

applied (Goat anti-rabbit-HRP at 1/2500, Goat anti-mouse-HRP at 1/2500; Biorad) and incubated 

for 1 hour with rocking at room temperature.  The blot was then washed, treated Supersignal 

West Pico Chemi-luminesent kit (Thermo Scientific), and exposed to Kodak autoradiographic 

film. 

 

Chromatin Immunoprecipitation 

ChIP was performed using the Millipore (Billerica, MA) protocol with some 

modification.  Briefly, one 10cm2 dish of cells was cross linked by the addition of 1% 

formaldehyde at room temperature for 10 minutes, followed by a glycine soak at a concentration 

of 125mM for 5 minutes at room temperature.  The cells were then washed twice using ice cold 

PBS containing protease inhibitors and scraped into a 1.5ml tube.  The cells were centrifuged at 

2000xg for 4 minutes at 4°C and resuspended in 300µl/107 cells RIPA (Invitrogen) and incubated 

on ice for 30 minutes.  Cell lysates were then subjected to sonication using a Missonex 3000 

sonciator with microtip at 30% power 10 cycles at 10 sec each with a one minute on ice in-

between sonications.  To assess the size of fragmented DNA an aliquot of each sample was 

centrifuged, phenol:chloroform extracted, and ethanol precipitated. Sonicated DNA was then run 
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on a 1% agarose gel and compared to a 1Kb ladder.  Once efficient sonication was confirmed, 

resulting in DNA shearing of 300-1000bp, the remaining lysate was centrifuged and the 

supernatant transferred to a new tube.  

The lysate was precleared using 60µl 50% agarose A/G beads (Invitrogen) and Salmon 

Sperm DNA (Invitrogen) mixture, centrifuged, and transferred to a new tube.  The precleared 

lysate was incubated with the antibody of interest [either H3AcK9 1/500 (Millipore,), H3k9dime 

1/250 (Millipore), Anti-C-MYC 1/250 (Millipore), or IgG control (Millipore)] overnight at 4°C 

with rotation.  The following day, agarose A/G beads were added to the lysate/antibody mix, 

allowed to incubate at 4°C with rotation for 1 hour, and the histone DNA complexes were 

retrieved by centrifugation.  The supernatant was removed, and the pelleted beads were washed 

first with a low salt concentration buffer containing: 0.1% SDS, 1% Triton X-100, 2mM EDTA, 

20mM Tris-HCl pH 8.1, 150mM NaCl; then with a high salt concentration buffer containing: 

0.1% SDS, 1% Triton X-100, 2mM EDTA, 20mM Tris-HCl pH 8.1, 500mM NaCl; then with a 

lithium chloride wash buffer containing: 250 mM LiCl, 1% NP40, 1% deoxycholate, 1mM 

EDTA, 10mM Tris-HCl pH 8.1, and finally twice with TE buffer: 10mM Tris-HCl, 1mM EDTA 

pH 8.0.  The beads were then washed in an elution buffer twice and the supernatant containing 

the immunoprecipitated complexes was collected. The salt concentration of the supernatant was 

then adjusted to a final 200mM NaCl and incubated overnight at 65°C to reverse the crosslinks.  

The resulting suspension was subjected to phenol:chloroform extraction and ethanol 

precipitation, and then used for PCR amplification of the hTERT promoter.  The PCR conditions 

were as follows:  2.5µl of DNA was amplified using the primers specific for a 275bp fragment of 

the hTERT promoter within the core region encompassing ~300bp upstream of the ATG start 

site. hTERT core Forward primer 5’-CCAGGCCGGGCTCCCAGTGGAT-3’, hTERT core 
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Reverse primer 5’-GGCTTCCCACGTGCGCAGCAGGA-3’.  The products were 

electrophoresed and visualized on a 1.5% agarose gel with Ethidium Bromide (EtBr) staining. 

 

Results 

Stable Oct-4 expression does not activate hTERT.   Oct-4 is extensively involved in many of 

the processes involved in pluripotency (Berrill et al., 2004) and is also one of the primary 

elements in the pluripotent regulatory network, as it has been shown to bind and activate both 

SOX2 and NANOG, two of the other main factors used in reprogramming differentiated cells 

(Boyer  et al., 2005; Wang et al., 2006).  In order to quantify the levels of expression from Oct4 

infection in both ASCs and BJs, cells stably infected with Oct-4, NANOG, and Lin28 were 

allowed to grow for 6 passages or approximately 14 population doublings. These later passage 

cells, along with early passage infected cells, were used to compare the levels of Oct-4 

expression to uninfected BJ cells and to the pluripotent hTERT-expressing iPS cells (Figure 25).  

In both ASC and BJ infected cells, the overall Oct-4 expression was elevated following selection, 

while Oct-4 was also elevated at similar levels to iPS following multiple passages.  We next 

examined stable lentiviral infection of Oct-4 into both BJ fibroblasts and ASC 8 cells.  After 

selection with puromycin and 3-5 population doublings, total RNA was isolated for RT-PCR to 

determine expression levels of hTERT and Oct-4 (Figure 26).  As shown in both types of 

infection methods in ASCs and the BJ fibroblasts, Oct-4 was expressed to the same levels as in 

iPS cells; however, there was no hTERT transcript detected. 
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Figure 25: ASC and BJ lentiviral stable Oct-4 over-expression as compared to iPS levels.  
Quantitative PCR assessment of stable lentiviral Oct-4 expression following 6 passages in both 
ASCs and BJ fibroblasts. All levels are shown at a significant (p <0.05) expression over baseline 
BJ fibroblast Oct-4 levels which was set at 1. Lenti ONL = lentiviral infection with Oct-4, 
NANOG, and Lin28 and P6 = passage 6, while other cells were harvested at 3days post 
infection. (* P <0.05) 
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Figure 26: Lentiviral Oct-4 expression in ASCs and BJs does not activate hTERT. RT-PCR 
analysis of Oct-4 stably infected ASCs and BJ fibroblasts show expression of Oct-4, but no 
upregulation of endogenous hTERT expression. Negative control is a template-free PCR. 
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Adenoviral Oct-4, SOX2, NANOG, and Lin28 expression does not activate hTERT 

in ASCs or BJ cells.  We next determined if the expression of iPS factors using transient 

adenoviral was capable of activating hTERT.  First, we wanted to establish the expression 

kinetics of the adenoviral infection in both ASCs and BJs.  Because it takes approximately 3 

weeks to induce pluripotency, we assessed hTERT expression following two infections spaced 

by 2 weeks.  To do this, we infected hTERT into ASCs and BJ fibroblasts and extracted total 

RNA 2, 6, 10 and 14 days for qRT-PCR analysis (Figure 27).  As a positive control, the 

adenoviral hTERT infections were capable of expressing hTERT mRNA at consistently elevated 

levels for the entire 2 week period.  We then transiently infected BJ fibroblasts with Oct-4 and 

hTERT twice over a 2 week period in order to test if adenoviral Oct-4 was capable of activating 

hTERT (Figure 28).  hTERT was expressed in the cells that were infected with the adenoviral 

hTERT,  yet while Oct-4 alone? was overexpressed, no hTERT expression was found in the 

adenoviral Oct-4 infections (Figure 28). Similarly, telomerase activity was found in only those 

cells that received the adenoviral hTERT infections as evident from a TRAP assay performed 

following various adenoviral infections (Figure 29). 

We next tested if the other iPS factors were capable of activating hTERT expression.  To 

do this, we performed similar adenoviral infections on both early passage ASC and BJ 

fibroblasts.  We first infected cells with either adenoviral SOX2, NANOG, or Lin28 as desribed 

above for adenoviral Oct-4 infections. The initial infection was followed after 6 days with 

another infection, then cells were allowed to rest for 3-6 days, harvested, and total RNA  
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Figure 27: Elevated hTERT expression using adenoviral hTERT in ASCs and BJ cells. 
qPCR analysis of hTERT expression of Ad hTERT infected BJ fibroblasts and ASCs. Cells were 
allowed to grow unpassaged for two weeks then collected for analysis following initial 
adenoviral infection.  Both BJ and ASC adenoviral hTERT infections showed expression at all 
time points as significant (p<0.05) over baseline uninfected BJ and ASC expression, showing the 
robust expression capabilities of the adenoviral vectors. iPS = induced pluripotent stem cells. 
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Figure 28: Adenoviral Oct-4 does not activate hTERT expression. RT-PCR for Oct-4 and 
hTERT expression following Ad Oct-4 infection over 2 weeks with 2 infections in ASC and BJ 
fibroblasts. Ad Oct-4 infections show undetectable upregulation in hTERT mRNA expression. 
Ad hTERT mRNA following infection can be seen upregulated for approximately 4 weeks with 
continued passage. Negative control is a template-free PCR reaction. 
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Figure 29: BJ and ASC Adenoviral Oct-4 does not upregulate hTERT activity, Adenoviral 
hTERT telomerase activity. TRAP assay for telomerase activity following adenoviral 
infections of both Oct-4 and hTERT into ASC and BJ fibroblasts.  Ad Oct-4 infections alone did 
not induce hTERT activity and Ad hTERT infection shows activity with the dual Oct-4/hTERT 
infection even after 28 days. 36bp Internal control shown on bottom of gel, marked with an 
arrow. 
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was extracted and used for RT-PCR (Figure 30-32).  Similar to the results with the Oct-4 

adenoviral infections, SOX2, NANOG, and Lin28 were expressed at higher levels as compared 

to uninfected cells, yet no hTERT expression was observed. In order to ensure that the 

adenoviral factors were being expressed following infection at sufficient levels, we used qPCR 

and comparisons to both a baseline uninfected BJ fibroblast expression (negative) and the over-

expressing iPS cells (positive) as our standards. Adenoviral Oct-4 was expressed at a significant 

(p <0.05) level over BJ fibroblasts and at levels similar to those seen in iPS cells (Figure 33).  

Likewise, adenoviral SOX2, NANOG, and Lin28 were significantly overexpressed at levels 

comparable to iPS cells (Figure 34-36).  Interestingly, we observed significant levels of SOX2 

and NANOG by qPCR in uninfected ASCs and BJs, and essentially no expression observed 

using a gel based RT-PCR, suggesting that ASCs do express these iPS factors at insufficient 

levels to induce pluripotency. 

 Having found that none of the factors alone were capable of activating hTERT even 

though their expression was similar to iPS cells, we asked if there was a combination of iPS-

related genes that would induce hTERT expression.  Since many groups have shown that the 

core required factors for iPS formation is the expression of both Oct-4 and SOX2, we first 

infected both ASCs and BJ fibroblasts with adenoviral Oct-4 and SOX2, showing the successful 

overexpression without the upregulation of hTERT (Figure 37).  We then infected ASC and BJs 

with all four iPS factors (OSNL) in an attempt to determine if all of these factors together were 

capable of activating hTERT (Figure 37).  Again, following 2 successive infections over the span 

of 14 days, we found successful overexpression of all four infected factors, but no induction of 

hTERT. 
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Figure 30: ASC and BJ Adenoviral SOX2 over-expression does not activate hTERT.  
Traditional RT-PCR for Ad SOX2 infections show over-expression in both ASC and BJ without 
an increase in hTERT message. Negative control is a template-free PCR reaction. 
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Figure 31: ASC and BJ Adenoviral NANOG over-expression does not activate hTERT. 
Traditional RT-PCR for Ad NANOG infections show over-expression in both ASC and BJ 
without an increase in hTERT message. Negative control is a template-free PCR reaction. 
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Figure 32: ASC and BJ Adenoviral Lin28 over-expression does not activate hTERT. 
Traditional RT-PCR Ad Lin28 infections show over-expression in both ASC and BJ without an 
increase in hTERT message. Negative control is a template free-PCR reaction. 
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Figure 33: ASC and BJ Adenoviral Oct-4 over-expression. qPCR for Ad Oct-4 infections 
show over-expression in both ASCs and BJs to levels comparable to those seen in the hTERT 
expressing iPS cells.  All samples are significant (p <0.05) over baseline BJ fibroblast 
expression. 
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Figure 34: ASC and BJ Adenoviral SOX2 over-expression qPCR for Ad SOX2 infections 
show over-expression in both ASCs and BJs to levels similar to those seen in the hTERT 
expressing iPS cells. All samples are significant (p <0.05) over baseline BJ fibroblast expression. 
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Figure 35 ASC and BJ Adenoviral NANOG over-expression. qPCR for Ad NANOG 
infections show over-expression in both ASCs and BJs to levels similar to those seen in the 
hTERT expressing iPS cells. All samples are significant (p <0.05) over baseline BJ fibroblast 
expression. 
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Figure 36: ASC and BJ Adenoviral Lin28 over-expression. qPCR for Ad Lin28 infections 
show over-expression in both ASCs and BJs to levels similar to those seen in the hTERT 
expressing iPS cells. All samples are significant (p <0.05) over baseline BJ fibroblast expression. 
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Figure 37: Adenoviral Oct-4, SOX2, NANOG and Lin28 expression does not activate 
hTERT. Infections of Ad-Oct4/SOX2/NANOG/Lin28 (OSNL) show over-expression of all 
genes in both ASCs and BJs without an increase in hTERT expression. 
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Adenoviral Oct-4, SOX2, NANOG, and Lin28 expression with Trichostatin A or C-

MYC activates hTERT expression. Trichostatin A (TSA) is a potent histone deacetylase 

inhibitor, where treated cells undergo extensive histone modifications, likely allowing for a more 

relaxed and active chromatin state.  It has been reported that TSA is capable of activating hTERT 

expression in BJ fibroblasts (Cong & Bacchetti, 1999; Takakura et al., 2001), suggesting that one 

negative regulatory element is the state of the histones at the hTERT promoter.  To test if TSA is 

capable of upregulating hTERT expression in our cells, we performed several treatments of 

differing concentrations for 24 hours as previously reported (Cong & Bacchetti, 1999). A TRAP 

assay was performed to test for telomerase activity, and we found that regardless of the TSA 

concentration, telomerase activity was not upregulated (Figure 38). To determine if the 

expression of Oct-4, SOX2, NANOG, and Lin28 coupled with TSA treatment was capable of 

upregulating hTERT activity, we initially infected cells with adenoviral Oct-4, SOX2, NANOG, 

and Lin28 as before and treated the cells with 1µM TSA for 24 hours. RT-PCR analysis showed 

that all four genes were upregulated in infected cells, but hTERT was elevated in only the 

samples treated with TSA (Figure 39).   

Because TSA is a global histone modifier with targets spanning the entire genome, we 

sought to determine if hTERT activation after TSA treatment was dependent on any single iPS 

factor. Accordingly, we infected both ASCs and BJ fibroblasts with Oct-4, SOX2, NANOG, or 

Lin28 and the combination of Oct-4 and SOX2, followed by treatment for 24 hours with 1µM 

TSA.  Standard RT-PCR for hTERT and 18S (Figure 40-41) suggested that each factor, when 

coupled with TSA, was capable of activating hTERT.  However, we saw a similar increase in 

hTERT activation in both ASC and to a smaller degree in BJs when treated with TSA alone  
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Figure 38: TSA treatment has no effect on telomerase activity in BJ and ASC. TSA 
treatments at varying dosages were performed on BJs and ASCs for 24 hours, followed by a 
TRAP assay. No telomerase activity was seen for any of the different concentration dosages. 
Positive control is the promyelocytic leukemia cell line, HL-60, negative control is lysis buffer 
alone. 36bp Internal control shown on bottom of gel marked with an arrow. 
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Figure 39: Adenoviral Oct-4, SOX2, NANOG, Lin28 + TSA activates hTERT in ASC and 
BJ.  Cells were infected with Ad Oct-4/SOX2/NANOG/Lin28 (OSNL) together with 1 µM TSA 
treatment for 24 hours showed hTERT transcriptional activation. Negative control is a no 
template PCR reaction. 
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Figure 40: hTERT activation in ASCs upon Adenoviral C-MYC and/or TSA treatment. 
Cells were infected with Ad Oct-4, SOX2, NANOG, Lin28 (OSNL), Oct-4 and SOX2 (OS) or 
individually, with/without C-MYC then with/without 1µM TSA for 24 hours. Infections were 
done twice, spaced six days apart, samples were collected on the 14th day. All infections with C-
MYC showed increased hTERT expression, while all treatments with TSA showed an increase 
as well. Negative control is a no template PCR reaction. 
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Figure 41: hTERT activation in BJ upon Adenoviral C-MYC and/or TSA treatment. Cells 
were infected with Ad Oct-4, SOX2, NANOG, Lin28 (OSNL), Oct-4 and SOX2 (OS) or 
individually, with/without C-MYC then with/without 1µM TSA for 24 hours. Infections were 
done twice, spaced six days apart, samples were collected on the 14th day. All infections with C-
MYC showed increased hTERT expression. Negative control is a no template PCR reaction. 
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(Figure 40-41), which was not translated into telomerase activity as shown earlier (Figure 38). 

To examine the effect of C-MYC infection on hTERT expression, we used an adenovirus to 

infect cells with C-MYC and found an upregulation of hTERT expression for all C-MYC 

infections for both ASCs and BJ cells (Figure 40-41). 

Since the end goal for all hTERT expression is the enzymatic activity of the 

ribonucleoprotein complex that is telomerase, we tested the effect of these treatments on its 

activity. The telomerase activity levels were highly variable, as shown by the representative 

TRAP gel (Figure 42).  To further quantify which infections had the most substantial increase in 

telomerase activity, we repeated this assay three separate times and used densitometery 

standardized to the internal 36bp control to obtain semi-quantified telomerase activity (Figure 

43).  We found that in ASC 8, there was a significant increase in telomerase activity when cells 

were infected with C-MYC alone or in combination with TSA treatment. Oct-4, SOX2, 

NANOG, and Lin28 infection together with TSA showed the highest levels of telomerase 

activity of all the tested samples, levels even surpassing those of ESC and iPS cells.  Similar 

results were observed with BJ fibroblasts infected with only C-MYC or C-MYC in combination 

with Oct-4, SOX2, NANOG, and Lin28. In contrast to the ASCs infected with Oct-4, SOX2, 

NANOG, and Lin28 treated with TSA, BJ cells showed minimal telomerase activity in the 

absence of C-MYC, indicating that these cells regulate hTERT differently than ASCs. We also 

performed numerous other combinations of infections using both lentiviral and adenoviral 

infections in an attempt to upregulate hTERT and telomerase activity, as well as to find the 

optimal combination for iPS formation (Table 3).  
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Figure 42: Representative telomerase activity gel for ASCs and BJs infected with 
Adenoviral C-MYC, Oct-4, SOX2, NANOG, Lin28 and/or TSA treatment. Cells were 
infected with Ad Oct-4, SOX2, NANOG, Lin28 (OSNL), or Oct-4 and SOX2 (OS), or 
individually, with/without C-MYC and with/without 1µM TSA for 24 hours.  Infections were 
done twice, spaced six days apart, and samples were collected on the 14th day.  Ad C-MYC and 
TSA with combinations of Ad (OSNL) show varying levels of telomerase activity. 36bp internal 
control shown at bottom of gel marked with an arrow. 
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Figure 43: Telomerase activity in ASC and BJ following adenoviral infection with C-MYC, 
Oct-4, SOX2, NANOG, Lin28 and/or TSA treatment. Cells were infected with Ad Oct-4, 
SOX2, NANOG, Lin28 (OSNL), Oct-4 and SOX2 (OS) or individually, with/without C-MYC 
then with/without 1µM TSA for 24 hours.  Infections were done twice, spaced six days apart, 
samples were collected on the 14th day. TRAP assay was performed in triplicate and gels were 
quantified using densitometry, standardized to 36 bp internal control. Relative baseline was set to 
uninfected cell telomerase activity, experiments with significant increase over baseline, p < 0.05 
(*) or p < 0.001 (**). 
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Table 3: Summary of Infections and hTERT Activation  
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Oct-4, SOX2, NANOG, and Lin28 infections upregulate C-MYC expression. We 

next wanted to determine if that the infections of ASC and BJs with Oct-4, SOX2, NANOG, and 

Lin28 could be affecting the upregulation of genes such as C-MYC, which as demonstrated 

above, can positively regulate hTERT.  We hypothesized that C-MYC levels would be 

detectable, but in insufficient quantities to overcome the levels of Mad1 (C-MYC’s opposing 

counterpart) or the chromatin state of the hTERT promoter, only allowing hTERT activation 

when TSA alleviates the closed chromatin state.  To test this, we initially examined the protein 

levels of C-MYC following the infection of Oct-4, SOX2, NANOG, and Lin28, as well as after 

treatment with TSA. We performed a Western blot analysis and probed for all five factors with 

actin as our loading control (Figure 44), showing that we were getting sufficiently high protein 

levels for all of the induction factors following adenoviral infection, comparable to the levels in 

iPS cells.  Additionally, we showed that upon treatment with Oct-4, SOX2, NANOG, and Lin28 

in ASC 8, there was an upregulation of C-MYC expression with or without TSA.  However, BJ 

fibroblasts did not show an increased protein product until the cells were treated with TSA, 

indicating a difference in the inherent hTERT regulation for ASCs and BJs.  hTERT protein 

levels were not examined due to the available antibodies incapacity to detect protein at moderate 

or low levels. 

Since we found a relationship between the infection of the iPS factors and C-MYC upregulation, 

we next wanted to examine more specifically the effect of Oct-4, SOX2, NANOG, and Lin28 

infection on C-MYC mRNA expression.  We infected ASCs and BJ fibroblasts individually and 

various combinations of Oct-4, SOX2, NANOG, Lin28, and/or C-MYC with or without TSA 

treatment, then harvested cells for gel-based RT-PCR and qPCR analysis.  Our  
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Figure 44: Western blot analysis of adenoviral Oct-4, SOX2, NANOG, Lin28 and C-MYC 
protein overexpression Cells were infected with Ad Oct-4, SOX2, NANOG, Lin28 (OSNL), or 
C-MYC then with/without 1µM TSA for 24 hours.  Infections were done twice, spaced six days 
apart, samples were collected on the 14th day.  All overexpressed genes showed an increased 
protein signal as detected by Western.  
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Figure 45: C-MYC Activation following Adenoviral Oct-4, SOX2, NANOG, Lin28 and/or 
TSA treatment. Gel-based RT-PCR for ASCs showing levels of C-MYC expression following 
infection with Oct-4, SOX2, NANOG and Lin28 (OSNL) alone or in combination. Negative 
control is template negative PCR. 
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Figure 46: C-MYC Activation following Adenoviral Oct-4, SOX2, NANOG, Lin28, C-MYC 
and/or TSA treatment. qPCR of ASCs showing levels of C-MYC expression following 
infection with Oct-4, SOX2, NANOG, Lin28 (OSNL), and C-MYC alone or in combination. 
Base level was normalized to expression in ASCs alone, and all expression is significantly (p 
<0.05) increased when compared to baseline values.  Relative expression normalized to the 
levels of 18S endogenous expression. 
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initial RT-PCR showed an upregulation of C-MYC following infection with all of the four 

factors (Figure 45), further quantified with qPCR (Figure 46).  Each factor, individually and in 

combination, showed a similar significant upregulation of C-MYC over the baseline, uninfected 

ASC.  However, this increase was not comparable to levels in iPS cells, while the adenoviral C-

MYC infections showed levels as high as those in the pluripotent stem cells.  We also saw the 

upregulation of C-MYC in a similar manner when the same infections were performed in BJ 

fibroblasts, with the adenoviral C-MYC infections showing levels similar to those seen in iPS 

(Figure 47-48). 

 

hTERT promoter in ASCs and BJ fibroblasts have a closed, inactivated chromatin 

state.   To further define the mechanism behind the activation of hTERT observed for both BJ 

fibroblasts and ASCs, we wanted to examine the chromatin state of the hTERT core promoter.  

To do this, we first optimized the sonication conditions to generate chromatin at a size small 

enough (300-1000bp) to ensure specificity for the DNA region of interest during the ChIP assay; 

too large of a fragment and the specificity of the assay decreases significantly.  We found in most 

of our cell strains the DNA was sheared to relevant sizes with 10 pulses at 30% power output of 

our sonicator (Figure 49).  Using this protocol, our ChIP analysis initially revealed that BJ 

fibroblasts had an elevated level of dimethylated lysine 9 on the exposed N-terminal tail of 

histone H3, while the same residue was lacking the presence of an acetyl group at the core 300bp 

hTERT promoter (Figure 50).  Our data indicates that elements of the hTERT promoter are in a 

closed, inaccessible chromatin conformation, providing a likely explanation as to why hTERT is 

not activated in BJ and ASC cell strains.  We hypothesized that if this is a marker of expression, 

then the hTERT expressing iPS cells should have the opposite complement of histone  
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Figure 47: C-MYC Activation following Adenoviral Oct-4, SOX2, NANOG, Lin28 and/or 
TSA treatment. Gel-based RT-PCR for BJ cells showing levels of C-MYC expression 
following infection with Oct-4, SOX2, NANOG, and Lin28 (OSNL) alone or in combination. 
Negative control is template negative PCR. 
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Figure 48: C-MYC Activation following Adenoviral Oct-4, SOX2, NANOG, Lin28, C-MYC 
and/or TSA treatment. qPCR of BJ fibroblasts showing levels of C-MYC expression following 
infection with Oct-4, SOX2, NANOG, Lin28 (OSNL), and C-MYC alone or in combination. 
Base level was normalized to expression in BJ alone, and all expression is significant (p <0.05) 
over baseline.  Relative expression set to the levels of 18S endogenous expression. 
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Figure 49: Optimization of sonication conditions for ChIP. Genomic DNA from ASCs and 
BJs were crosslinked with formaldehyde then subjected to sonication at a set power output for 
either  5 x 10 second pulses or for 10 x 10 second pulses.  The samples sonicated at 10 x 10 
second pulses showed DNA sheared into sizes of approximately 300-1000 bp, which is an 
appropriate size for chromatin immunoprecipitation. 
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Figure 50: Histone modifications indicative of a closed chromatin state at the hTERT 
promoter in BJ fibroblasts. BJ fibroblasts were fixed and the resulting genomic DNA was 
sonicated and immunoprecipitated with an antibody for either acetylated lysine 9 histone H3 or 
dimethylated lysine 9 histone H3. Lanes 3 represents 1% input of BJs and lane 5 is a BJ genomic 
DNA positive control, while a template-negative PCR control (lane 4).  PCR amplification was 
achieved using primers specific for a 300bp region of the hTERT core promoter.  
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modifications. Thus, we next extended our analysis to examine both ASCs, another hTERT-

negative fibroblast line of fetal origin IMR90, and iPS cells. Our ChIP analysis revealed that all 

of the telomerase-negative cell strains, BJs, ASCs, and IMR90s, had similar H3 patterns, with 

very low acetylated H3 lysine 9 and substantial dimethylated H3 lysine 9, indicating closed 

chromatin conformation. As hypothesized, the iPS cells had a reduced compliment of 

dimethylated H3 lysine 9 and a substantial increase in acetylated H3 lysine 9 residue at the core 

hTERT promoter, suggesting an open chromatin conformation and expression at the hTERT 

promoter. Together, these data support chromatin condensation as an important mechanism for 

hTERT regulation in normal fibroblasts and adipose-derived stem cells (Figure 51). 

 

Discussion 

The recent creation of pluripotent populations of cells from normal somatic cells has 

generated much excitement about the possibilities for a viable option for autologous cellular 

therapies.  Many therapeutic approaches have been theorized for the use of these iPS cells in a 

variety of applications including the creation of disease-specific cell types for tissue engineering.  

Importantly, these therapies would be patient-specific, eliminating immune response and tissue 

rejection associated with graft vs. host disease.  Another important feature is that these iPS cells 

are essentially indistinguishable from their native, pluripotent counterparts, ESCs, with the 

capacity to differentiate into all three germ layers and theoretically the ability to create any cell 

type in the human body. Pluripotent cells continuously divide without the telomere attrition-

based senescence found in most normal cells, primarily due to their expression of telomerase, 

which stabilizes the telomere lengths. iPS cells are typically created from normal non-hTERT  
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Figure 51: Chromatin state of the hTERT promoter in BJ, ASC, IMR90 and iPS cells. BJ, 
ASC, IMR90s, and iPS cells were fixed, sonicated, and immunoprecipitated with an antibody for 
either acetylated histone lysine 9 H3 or dimethylated lysine 9 histone H3. Shown is the 
background precipitated hTERT core promoter from non-specific interaction with IgG, a 1% 
input, and a PCR no-template negative control. PCR amplification was achieved using primers 
specific for a 300bp region of the hTERT core promoter.  
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expressing cells such as BJ fibroblasts, indicating that during the process of iPS induction the 

factors used are either directly or indirectly regulating expression of telomerase.   

We show here that BJ fibroblasts and ASCs both have a closed chromatin state at the 

hTERT core promoter, which is one mechanism of hTERT regulation in ASCs and BJs.  Both 

cell types are capable of upregulating hTERT mRNA following treatment with the histone 

deacetylase inhibitor Trichostatin A, which causes the relaxation of the hTERT core promoter.  

However, neither cell type showed enzymatic telomerase expression with TSA treatment alone, 

regardless of the concentration of TSA used, which is possibly due to insufficient hTERT 

expression or a lack of appropriate hTERT posttranslational modifications.   We also show that 

the four iPS factors, Oct-4, SOX2, NANOG, and Lin28 from the Thomson group (Yu et al., 

2007) do not individually have a direct hTERT regulatory ability, even when expressed at levels 

similar to iPS cells.  Because the process of iPS formation is very inefficient with only 0.001% 

of cells undergoing iPS formation, the necessary mechanisms are dependent not only on the 

expression of these factors but also on their ability to properly activate downstream genes in the 

appropriate combinations and sequence to achieve pluripotency. This is likely the reason why we 

do not detect hTERT expression until treatment with TSA.  However, we show also that the 

overexpression of these iPS factors changes the expression of C-MYC, which was used to induce 

pluripotent cells by the Yamanaka group (Takahashi et al., 2007), although not to the levels of 

iPS cells.  Although ectopic C-MYC overexpression does have the ability to upregulate hTERT 

at both RNA and enzyme levels in ASCs, the activity is still present at lower levels than iPS 

cells.  This shows that even with a closed chromatin state at the hTERT promoter, the 

overexpression of C-MYC causes upregulation of hTERT expression. Thus, C-MYC seems to 

have a very similar effect in both cell types, upregulating hTERT to low levels, which 
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corresponds with most published data describing the regulatory Myc/Mad/Max network. Mad1 

and C-MYC compete for their mutual binding partner Max, and once bound, these factors exhibit 

HDAC (causing a closed chromatin state) or HAT (causing a relaxed chromatin state) 

recruitment respectively at their target genes.  By upregulating C-MYC, the balance of 

competition would be shifted in favor of its binding to Max and the activation of the hTERT 

promoter by HAT-induced histone acetylation. 

 ASCs and BJ fibroblasts have many similarities including their morphology and their 

mesenchymal origin; yet as we have shown previously ASCs have a multipotent capacity and a 

baseline expression of the various iPS factors at significantly higher levels than BJ cells, 

suggesting these cells are more stem-like.  We show here that ASCs and BJs also have 

alternative mechanisms of hTERT regulation even though they have a similarly condensed 

chromatin state. These regulatory differences were related to the levels of telomerase activation 

observed when the cells were infected with Oct-4, SOX2, NANOG, and Lin28 and then treated 

with TSA.  BJ fibroblasts exhibited minimal telomerase activity with all four iPS factors and 

TSA, which was similar to that found with TSA alone, while ASCs showed a significant increase 

of telomerase activity to levels even higher then those found in iPS cells.  This difference could 

be due to ASCs more primordial state, where appropriate hTERT transcriptional activators are 

expressed in the ASCs to allow for the upregulation of hTERT.  

 In conclusion, during the generation of iPS cells, hTERT is an important step in the 

pathway to pluripotency and cellular immortality. Because groups have shown that it is possible 

to induce adult fibroblasts such as BJs and ASCs to pluripotency, albeit at extremely low 

efficiencies (Takahashi et al., 2007; Yu et al., 2007), we wished to elucidate the mechanism 

underlying the activation of hTERT during this process. While the chromatin state of the hTERT 
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promoter in ASCs and BJs is similar and iPS cells have the opposite chromatin complement, this 

appears to be the one aspect of regulation that both of these cell strains share. Our data suggest 

that the hTERT promoter has a very diverse number of regulatory sites, starting with chromatin 

structure and ending with transcriptional activators and repressors. BJ fibroblasts seem to have a 

tighter regulation of hTERT than ASCs, allowing ASCs to express sufficent levels of hTERT to 

give iPS levels of activity.  Our working model depicts the regulation of the hTERT core 

promoter in ASCs, showing that TSA blocks the effects of HDACs and allows for the relaxation 

of the hTERT promoter (Figure 52).  However, there is still an obvious need for a transcriptional 

activator, which may be the C-MYC oncogene.  Yet as we have shown, there may be alternative 

transcription factors, which may be either constitutively present in ASCs or activated following 

infection with Oct-4, SOX2, NANOG, and lin28 coupled with the TSA treatment in ASCs alone.  
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Figure 52: Working model for ASC hTERT regulation.  The hTERT core promoter is 
normally in a closed chromatin conformation.  This model highlights some of the hypothetical 
mechanisms employed by both the Yamanaka and the Thomson iPS factors.  They both share 
very similar concepts, and while the Yamanaka group uses C-MYC, a factor implicated in direct 
activiation of hTERT, the Thomson group does not.  
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Table 4: RT-PCR and qRT-PCR Primers 

 



www.manaraa.com

 

 121 

Chapter 5 

Discussion  

 

 The medical paradigm of healing today prescribes that following trauma or disease, the 

quality and speed of rejuvenation is primarily dictated by the slow and sometimes incomplete 

methods the body has to employ, with doctors largely playing an observatory role during the 

process ensuring that healing happens as cleanly and smoothly as possible.  When intervention is 

necessary, many of the procedures are invasive, yet while correcting the original error, often the 

procedure itself can cause many more problems of its own.  This is sometimes due to a general 

lack of useable replacement tissues during corrective surgery and the dependence on synthetic 

prosthetics that have only basic organic simulation ability.  For example, total knee joint 

replacements are typically extremely invasive procedures, leaving patients with months if not 

years of recovery, and importantly, their new body parts generally under-perform (Bremander et 

al., 2005; Robertsson &  Dunbar, 2001).  While the problem this procedure is designed to repair 

is in itself extremely painful, the solution employed usually involves the removal of large 

portions of bone, only to be replaced by plastic and metal parts, which is less than optimal.  

However, without an alternative solution, total or partial knee replacement is the only thing that 

functions well enough for extended periods of time.   

One solution for this problem, which has started to gain momentum, is the replacement of 

the lost cartilage with the patient’s own cells, which could circumvent months of pain and 

discomfort and would allow for a true reversion to a more youthful, usable knee.  The difficulty 

found with this solution is a lack of readily available, autologous replacement tissues. Many 

recent studies have searched for this source of replacement tissues with focus on the adult stem 
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cell niche, with bone marrow mesenchymal stem cells as the primary adult stem cell type being 

studied.   These cells have an extensive history behind them, and were first successfully used in 

the 60’s and 70’s, via a total bone marrow transplantation following ablative chemotherapy of 

the patient’s own cells.  To obtain these cells, a painful harvesting procedure involving the 

coring and aspiration of bone marrow from the iliac crest of the pelvis is necessary (Abdallah & 

Kassem, 2008),  only producing low cell yields that require further expansion and culturing to 

achieve the required volume of cells for use in patients (Abdallah & Kassem, 2008).  Even with 

these shortcomings, some studies have examined the possibility of using these cells as a source 

for replacement tissues for therapies, such as alternatives for those suffering from knee joint 

degradation with promising results (Chen & Tuan, 2008; Centeno et al., 2009).   

Another promising mesenchymal stem cell type is the adipose derived mesenchymal stem 

cell (ASCs).  We show that these cells are readily available, with isolations possible from the 

many fat deposits distributed throughout the body.  We have successfully isolated these cells 

from the fat surrounding the abdomen, thighs, arms and breasts (Francis et al., 2010; Elmore, 

Zhao unpublished observations).  These cells can also be isolated in a number of different ways, 

directly from the processed fat lipoaspirate or from whole tissue obtained following 

abdominoplasty or reduction mammoplasty. We have also shown theses cells can be isolated 

from a simple,  20 minute process from the saline/blood fraction of the lipoaspirate (Francis et 

al., 2010),  which is possibly due to the disruptive nature of the suction and sonication that 

occurs during the lipoaspiration procedure. Further, these procedures are typically elective, out-

patient operations that are performed on a daily basis in hospitals around the world, making 

ASCs one of the most readily available sources of adult stem cells.   
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Regardless of the process by which the cells are obtained and isolated from the adipose 

tissue, the cellular yield is far greater then that obtained from bone marrow, a feature that would 

allow for immediate processing and potentially a quick return to the patient’s body. We also 

show that our ASCs have multipotent capability from varying isolation procedures, successfully 

differentiating into bone, cartilage, and adipose cells as efficiently as BMMSCs, indicating their 

functional similarities.  Further, we found that our cell strains have an immunophenotype 

identical to those seen in many other publications.  Interestingly, this cell surface 

characterization successfully aligns them with BMMSCs, but fails to distinguish these cells from 

normal BJ fibroblasts  which, presents a difficulty with identification during processing but in no 

way diminishes ASCs capabilities as BJ fibroblasts showed no differentiation capacity. To 

resolve a method to successfully discern ASC population via cell surface markers, it would be 

necessary to find either a complement that is more specific or to find a particular marker that is 

unique to these cells, which has yet to be accomplished.  

 We also found that ASCs do not express the enzyme telomerase and are subject to 

telomere attrition, in contrast to other ASC studies (Lin et al., 2008; Fu et al., 2001). The lack of 

telomerase poses a problem if it becomes necessary to significantly expand these cells, as their 

available proliferative capacity may be exhausted after implantation into the patient’s body and 

the subsequent in vivo expansion.  If the quantity of cells obtained from the original isolation is 

insufficient to function in transplantation or other theraputics, we propose that these cells could 

be transiently infected with hTERT in an effort to stabilize the cell’s telomeres until all necessary 

expansion has been achieved. The cells could then be reimplanted in the body without fear of the 

possibility that the cells would retain telomerase activity and any potential, albeit unlikely, 

negative tumorgenic properties from its expression.  Experiments could also be performed to 
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further define these cells.   Constituitivly expressing hTERT would allow us to determine if 

telomerase can enhance differentiation after cellular prolifetration past the normal limit of these 

cells.  These studies would also be used to determine if these cells have any transformative 

capacity following immortalization and continuous passage. 

In an attempt to further define stem cell features of ASCs, we successfully show a set of 

genes that could prove to be key identifiers of a stem cell phenotype.  Oct-4, SOX2 and NANOG 

are genes largely associated with the features of pluripotent cells (Wang et al., 2006). These 

genes are key to many of the processes that govern the embryonic stages of development and 

allow for many of the differentiation capacities seen in pluripotent cells.  These genes also play a 

crucial role as regulators in the generation of somatic cells induced into pluripotent stem cells.  

We successfully show that these genes are expressed at significantly higher levels than those 

found in normal fibroblasts, further distinguishing them as adult stem cells.  

To further understand the relationship of BJ, ASCs, and their pluripotent counterparts iPS 

cells, we wanted to examine the regulation of the key marker for cellular immortilization, 

hTERT.  We have shown that the expression of hTERT is undetectable in both BJ fibroblasts and 

also from our ASCs isolations; however, once BJ fibroblasts are infected with the four induction 

factors (Oct-4, SOX2, NANOG and Lin28) other groups have shown that a very small subset of 

infected cells (0.001%) undergo a process of de-differentiation into pluripotent cells (iPS), which 

express hTERT (Yu et al., 2007).  Interestingly, ASCs do express these pluripotent factors at 

higher levels than in BJ fibroblasts but lower than the levels found in iPS cells. This low level 

expression in ASCs could be sufficient to allow these cells their multipotent ability, while not 

being high enough to allow them to fully become pluripotent.  
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Due to ASCs expression of these iPS genes, we further hypothesized ASCs could also 

possess a more pluripotent stem cell-like epigenetic/regulatory state, which would allow for a 

more efficient upregulation of hTERT following infection. To examine this, we overexpressed 

each of these genes individually using a transient adenoviral expression system, which showed 

undetectable hTERT expression.  This lack of hTERT upregulation could be due to the 

inefficiency of the iPS generation process.   It has been reported previously that only a very small 

fraction of cells typically undergo iPS colony formation following stable infection and 

overexpression of these genes (Yu et al., 2007; Takahashi et al., 2007).  The small subset of cells 

that appear be more susceptible to pluripotency could have a particular epigenetic state that 

would be more favorable for the induction process to occur.  If this is the case, then any cells that 

may be expressing hTERT could be in such a small proportion making the signal undetectable in 

our ASC and BJ cell population.   

To further examine the epigenetic state at the hTERT promoter, we used TSA, a potent 

histone deacetylase inhibitor, to treat both our ASCs and BJ fibroblasts.  With multiple TSA 

treatments, no detectable telomerase activity was observed, which is in contrast to studies 

suggesting TSA as the only necessary component for telomerase activation in other cell strains 

(Cong & Bacchetti 1999).  When we examine the levels of RNA however, we found that TSA 

treatment alone increased hTERT mRNA expression in both BJ and ASCs, as well as when we 

used Oct-4, SOX2, NANOG, and Lin28 infected cells with TSA treatment.  This effect 

corresponded to our examinations of the hTERT promoter chromatin state, which showed 

characteristics of a closed chromatin conformation, including dimethylated lysine 9 at the n-

terminal tail of histone H3 with a lack of acetylation at the same residue.  When we examined the 

same modifications in hTERT expressing iPS cells, we found the opposite, lysine 9 histone H3 
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modification, indicating an open conformation.  These data together indicate that there likely 

exists the means for transcriptional activation, but not the means to relieve the repression due to 

the closed chromatin state at the hTERT promoter.  However, when the epigentetic repression is 

relieved via the treatment with TSA there still exists a post-transcriptional mechanism limiting 

its expression, possibly with mRNA processing or with post-translational degradation.   

We hypothesized that one possible latent transcriptional activator could be a low level 

expression of the oncogene C-MYC.  C-MYC’s ability to activate target genes is dependent on a 

few different factors.  When C-MYC binds to Max, this dimerization allows the transcription 

factor to bind to its target promoters, where it has been shown to further recruit histone acetyl 

transferases (HAT) allowing for the relaxation of the bound chromatin (Amati et al., 2001).  In 

competition with this, Mad1 will also bind to the ubiquitously expressed Max, and in an 

antagonistic manner will bind the same locations on promoters, instead recruiting HDAC to 

deacytelate the histones and allow for a closed chromatin state (Laherty et al., 1997). If there is a 

balance between C-MYC and Mad1 expression within the cell, there would be a threshold level 

of expression neceassary for one to overcome the effects of the other, i.e. just a small change in 

one would be buffered by the other, thus the outcome would be minimal. Importantly, these 

transcription factors have also been shown in the literature to bind directly to the hTERT core 

promoter at two separate E-box locations. These E-boxes are contained within the area of the 

hTERT promoter that we found exhibiting a closed chromatin conformation. Interestingly, C-

MYC is also one of the alternative genes (Oct-4, SOX2, Klf4 and C-MYC) used by the 

Yamanaka group to generate induced pluripotent stem cells (Takahashi et al., 2007), which could 

result in immediate hTERT activation that could lend a growth advantage to the newly 
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generated, rapidly dividing, colony forming iPS cells.  However, mice formed from these cells 

were shown to form premature tumors (Takahashi et al., 2007).   

To examine the effect of C-MYC overexpression on hTERT upregulation in BJ cells and 

ASCs, we first looked at the basal level of C-MYC expression before and after infections with 

the Thomson iPS factors.  Interestingly, there was a significant increase in expression of C-MYC 

with the introduction of Oct-4, SOX2, NANOG, and Lin28, but at a much lower level than in iPS 

cells. We observed an upregulation of C-MYC to iPS levels when overexpressed alone.  When 

we examined the mRNA expression of hTERT with the overexpression of C-MYC, we saw a 

similar activation to those seen with our TSA treatments. The most significant increase in 

telomerase activation was found when Oct-4, SOX2, NANOG, and Lin28 were coupled with 

TSA treatment, where hTERT activation in ASCs was at levels above those observed in both 

ESCs and iPS cells.  This was in direct contrast to same infections/treatments in BJ fibroblasts, 

which showed telomerase activity similar to the treatments with TSA alone, which suggests that 

there are further differences between these two cell strains with regards to their individual gene 

expression environments.  Specifically, ASCs require only the four factors and TSA treatment to 

show full activation, while lacking a post transcriptional/post-translational mechanisms, found in 

BJ fibroblasts.  C-MYC’s activation functions in a more universal, but lower manner could be 

attributed to not only C-MYC’s well documented binding to the core promoter, but also to the 

regulation of one of its many other targets.  To further define the regulation of hTERT during the 

generation of pluripotent cells, analysis of alternative binding factors such as SP1, and USF1 

could lead to a better understanding of hTERT activation.  Also, examination of levels of hTERT 

transcriptional (i.e.MAD1, WT1, and SP3) and post translational repressors (i.e. MKRN1 and 

CHIP) would also prove insightful. Since the efficiency of reprogramming is very minute, 
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studies examining the specific cellular population which might activate telomerase would also be 

informative.  To do this we would express a reporter system (GFP, Luciferase) driven by the 

hTERT promoter.  If there is a small population of cells, which are not detectable by TRAP or 

PCR, we can sort or image cells for individual cellular activation, isolate those populations and 

continue our analysis of hTERT regulation.    

In summation, there has been promising advancements in the field of regenerative 

medicine.  A crucial missing element for this field is a readily available source of cells for tissue 

reconstruction.  ASCs could fill a portion of this requirement due to their ease of access in 

quantities sufficient for use immediately in many cellular based therapies.  While 

morphologically similar to BJ fibroblasts, ASCs are genetically distinct due to their ability to 

differentiate into multiple cell types and express genes closely associated with pluripotency. The 

most limiting aspect of ASCs is their relatively limited potential for expansion due to a lack of a 

telomere maintenance mechanism and their lineage specific differentiation capacity, which has 

been partially circumvented by the discovery of iPS cells, which can differentiate into all three 

germ layers. These iPS cells originate from normal somatic cells and using a very specific set of 

genes, are significantly altered into the embryonic-like cell type.  An important feature of this 

process is the induction of hTERT expression and telomerase activity, allowing for an immortal-

like proliferative capacity. We show that the Thomson factors by themselves are not capable of 

activating hTERT expression, due likely to the necessity of a compliant epigenetic state at the 

hTERT promoter and to a presumed lack of direct hTERT promoter binding ability (i.e. no 

binding sites within the hTERT promoter).  The hTERT core promoter in both BJs and ASCs is 

normally in a closed inactive state, where as iPS cells show a relaxed accessible promoter.  This 

closed state could prevent the endogenous activation by C-MYC, which shows a similar 
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activation ability in ASCs and BJ cells when overexpressed.  Similarly, it has previously been 

shown that one can activate hTERT expression with the use of HDAC inhibitors, but in our 

hands no telomerase activation was found after TSA treatment, indicating a possible regulatory 

mechanism at the post-transcriptional/translational level.  This regulation is removed when 

ASCs, but not BJ cells, are treated with TSA following infection with Oct-4, SOX2, NANOG, 

and Lin28, highlighting another important distinction between ASCs and BJ fibroblasts.  These 

observations further validate that ASCs as a more primordial cell type with a gene profile 

somewhere inbetween the pluipotent embryonic cell and the fully committed fibroblast, giving 

these cells the unique ability to function with fibroblast-like growth while retaining a limited 

ability to differentiate into other cell types.  If this understanding could be further expanded, the 

difference that create these cell types could be teased apart, allowing manipulation of cells into 

whatever form is clinically needed.  This would allow us to be able to grow new tissues in vitro, 

with the strong differentiation capacity of embryonic cells, while retaining the ease of culture 

that ASCs possess as a means of filling the ever growing need for replacement cellular therapies. 
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